
1Advanced Databases – © P. Baumann

SQL

2Advanced Databases – © P. Baumann

Conceptual Evaluation Strategy

 Semantics defined in terms of conceptual evaluation strategy:

• Compute cross-product of relation-list

• Discard resulting tuples failing qualification

• Delete attributes not in target-list

• If DISTINCT: eliminate duplicate rows

 probably least efficient way to compute query!

• optimizer will find more efficient strategies

SELECT [DISTINCT] target-list

FROM relation-list

WHERE qualification

3Advanced Databases – © P. Baumann

Join

 Join = several tables addressed in one query

SELECT S.sid

FROM Sailors S, Reserves R

WHERE S.sid=R.sid

SELECT target-list

FROM Relation1 R1, Relation2 R2, …

WHERE qualification

 List of relations in FROM clause determine cross product

 Frequently cross-relation conditions on attribute values to restrict results

 Most common: R1.attr1 = R2.attr2

• ex:

4Advanced Databases – © P. Baumann

More Joins

 T = R ⋈C S

• First build R x S, then apply σC

 Generalization of equi-join: A B where one of =, <, ...

 Today, more general: σC can be any predicate

 Common join types [Quest]:

 Left join, right join, natural join,

https://www.quest.com/community/blogs/b/database-management/posts/an-overview-of-sql-join-types-with-examples

5Advanced Databases – © P. Baumann

Even More on Joins

6Advanced Databases – © P. Baumann

"Sailors who’ve reserved at least 1 boat"

 Would adding DISTINCT to this query make a difference?

(sid) sname rating age (sid) bid day

22 Dustin 7 45.0 22 101 10/10/96

22 Dustin 7 45.0 58 103 11/12/96

31 Lubber 8 55.5 22 101 10/10/96

31 Lubber 8 55.5 58 103 11/12/96

58 Rusty 10 35.0 22 101 10/10/96

58 Rusty 10 35.0 58 103 11/12/96

SELECT S.sid

FROM Sailors S, Reserves R

WHERE S.sid=R.sid

(sid) sname rating age (sid) bid day

22 Dustin 7 45.0 22 101 10/10/96

58 Rusty 10 35.0 58 103 11/12/96

(sid)

22

58

ReservesSailors Boats

7Advanced Databases – © P. Baumann

"sid’s of sailors who have reserved

a red or a green boat"

 UNION: Can be used to compute the

union of any two union-compatible sets of

tuples

• which themselves are the result of

SQL queries

SELECT S.sid

FROM Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid

AND (B.color=„red‟ OR B.color=„green‟)

SELECT S.sid

FROM Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=„red‟

UNION

SELECT S.sid

FROM Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=„green‟

 If we replace OR by AND in the first

version, what do we get?

8Advanced Databases – © P. Baumann

SELECT S.sid
FROM Sailors S, Boats B1, Reserves R1,

Boats B2, Reserves R2
WHERE S.sid=R1.sid AND R1.bid=B1.bid

AND S.sid=R2.sid AND R2.bid=B2.bid
AND (B1.color=„red‟ AND B2.color=„green‟)

"sid’s of sailors who have reserved

a red and a green boat"

 INTERSECT: Can be used to compute the

intersection of any two union-compatible

sets of tuples

9Advanced Databases – © P. Baumann

SELECT S.sid
FROM Sailors S, Boats B1, Reserves R1,

Boats B2, Reserves R2
WHERE S.sid=R1.sid AND R1.bid=B1.bid

AND S.sid=R2.sid AND R2.bid=B2.bid
AND (B1.color=„red‟ AND B2.color=„green‟)

"Find sid’s of sailors who have reserved

a red and a green boat"

 INTERSECT: Can be used to compute the

intersection of any two union-compatible

sets of tuples

Sailors Reserves Boats

S R1 B1: red

R2 B2: green

10Advanced Databases – © P. Baumann

SELECT S.sid
FROM Sailors S, Boats B1, Reserves R1,

Boats B2, Reserves R2
WHERE S.sid=R1.sid AND R1.bid=B1.bid

AND S.sid=R2.sid AND R2.bid=B2.bid
AND (B1.color=„red‟ AND B2.color=„green‟)

SELECT S.sid
FROM Sailors S, Boats B1, Reserves R1
WHERE S.sid=R1.sid AND R1.bid=B1.bid

AND B1.color=„red‟
INTERSECT
SELECT S.sid
FROM Sailors S, Boats B2, Reserves R2
WHERE S.sid=R2.sid AND R2.bid=B2.bid

AND B2.color=„green‟

"Find sid’s of sailors who have reserved

a red and a green boat"

 INTERSECT: Can be used to compute the

intersection of any two union-compatible

sets of tuples

Key field!

 Included in the SQL/92 standard,

but some systems don‟t support it

11Advanced Databases – © P. Baumann

 Find names of sailors who‟ve reserved boat #103:

Nested Queries

SELECT S.sname
FROM Sailors S
WHERE S.sid IN (SELECT R.sid

FROM Reserves R
WHERE R.bid=103)

 WHERE clause can itself contain an SQL query!

• Actually, so can FROM and HAVING clauses

 To find sailors who‟ve not reserved #103, use NOT IN

 To understand semantics of nested queries,

think of a nested loops evaluation

• For each Sailors tuple, check the qualification by computing the subquery

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid = R.sid and R.bid=103

12Advanced Databases – © P. Baumann

More on Set-Comparison Operators

 We have already seen IN, EXISTS and UNIQUE

• Can also use NOT IN, NOT EXISTS and NOT UNIQUE

 Also available: op ANY, op ALL, op one of , , , , ,

 "sailors whose rating is greater than that of sailor Horatio"

SELECT *

FROM Sailors S

WHERE S.rating > ANY (SELECT S2.rating

FROM Sailors S2

WHERE S2.sname = „Horatio‟)

13Advanced Databases – © P. Baumann

Rewriting INTERSECT Queries Using IN

 "sid‟s of sailors who‟ve reserved both a red and a green boat":

SELECT S.sid

FROM Sailors S, Boats B, Reserves R

WHERE S.sid=R.sid AND R.bid=B.bid AND B.color=„red‟

AND S.sid IN (SELECT S2.sid

FROM Sailors S2, Boats B2, Reserves R2

WHERE S2.sid=R2.sid AND R2.bid=B2.bid

AND B2.color=„green‟)

14Advanced Databases – © P. Baumann

Set Difference in SQL

 "sailors who have reserved
all boats"

SELECT S.sname

FROM Sailors S

WHERE NOT EXISTS

((SELECT B.bid

FROM Boats B)

EXCEPT

(SELECT R.bid

FROM Reserves R

WHERE R.sid=S.sid))

SELECT S.sname

FROM Sailors S

WHERE NOT EXISTS (SELECT B.bid

FROM Boats B

WHERE NOT EXISTS (SELECT R.bid

FROM Reserves R

WHERE R.bid=B.bid

AND R.sid=S.sid))

Sailors S such that ...

there is no boat B without ...

a Reserves tuple showing S reserved B

(1)

(2)

 Let‟s do it the hard way,
without EXCEPT:

15Advanced Databases – © P. Baumann

SELECT S.sname

FROM Sailors S

WHERE S.rating= (SELECT MAX(S2.rating)

FROM Sailors S2)

Aggregate Operators

 Summary information instead of value list

COUNT(*)

COUNT([DISTINCT] A)

SUM([DISTINCT] A)

AVG([DISTINCT] A)

MAX(A)

MIN(A)

SELECT AVG (S.age)

FROM Sailors S

WHERE S.rating=10

SELECT COUNT (*)

FROM Sailors S

A: single column

SELECT COUNT (DISTINCT S.rating)

FROM Sailors S

WHERE S.sname=„Bob‟

16Advanced Databases – © P. Baumann

 SELECT S1.a, S2.b FROM S1, S2

• S1 S2 = [<a,b> | a S1, b S2]

 S1 UNION S2

• S1 S2 = [t | t S1 t S2]

 S1 INTERSECT S2

• S1 S2 = [t | t S1 t S2]

 S1 EXCEPT S2

• S1 \ S2 = [t | t S1 t S2]

 SUM(S.num), AVG(), ...

• t.num
t S

Set Operations: Summary

 EXISTS(S)

• S {}

 t IN S2 t = ANY(S2)

• t S2

 t op ANY(S) t op SOME(S)

• x S: t op x

• (t op s1) ... (t op sn) for si S

 t op ALL (S)

• x S: t op x

• (t op s1) ... (t op sn) for si S

17Advanced Databases – © P. Baumann

Breaking the Set: ORDER BY

 So far: Query results are (multi) sets, hence unordered

Sometimes: need result sorted

 ORDER BY clause does this:

SELECT [DISTINCT] target-list

FROM relation-list

WHERE qualification

ORDER BY sort-list [ASC|DESC]

 sort-list: list of attributes for ordering (ascending or descending order)

 Ex: “Names of all sailors,

in alphabetical order”
SELECT S.sname

FROM Sailors S

ORDER BY S.sname

18Advanced Databases – © P. Baumann

Grouping

 So far: aggregate operators applied to all (qualifying) tuples.

Sometimes: apply to each of several groups of tuples

 Consider: "age of the youngest sailor for each rating level"

• Unknown # of rating levels, and rating values for levels

• If we knew rating values go from 1 to 10:

can write loop of 10 queries:

For i = 1, 2, ... , 10:

SELECT MIN (S.age)

FROM Sailors S

WHERE S.rating = i

SELECT MIN(S.age)

FROM Sailors S

GROUP BY S.rating

…or use GROUP BY:

19Advanced Databases – © P. Baumann

SELECT [DISTINCT] target-list

FROM relation-list

WHERE qualification

GROUP BY grouping-list

HAVING group-qualification

Queries With GROUP BY and HAVING

 target-list contains (i) attribute names, (ii) aggregate terms (ex: MIN(S.age))

 grouping-list: list of attributes for grouping

 group-qualification: group selection criterion (predicate on grouping-list)

 target-list attributes must be subset of grouping-list

• A group is a set of tuples that have the same value for all attributes in grouping-list

• Intuitively, each answer tuple corresponds to a group, and these attributes must have a single value per group

20Advanced Databases – © P. Baumann

"Age of the youngest sailor with age 18,

for each rating with at least 2 such sailors"

SELECT S.rating, MIN (S.age) AS minage

FROM Sailors S

WHERE S.age >= 18

GROUP BY S.rating

HAVING COUNT (*) > 1

sid sname rating age

22 dustin 7 45.0

29 brutus 1 33.0

31 lubber 8 55.5

32 andy 8 25.5

58 rusty 10 35.0

64 horatio 7 35.0

71 zorba 10 16.0

74 horatio 9 35.0

85 art 3 25.5

95 bob 3 63.5

96 frodo 3 25.5

Sailors instance:

21Advanced Databases – © P. Baumann

"Age of the youngest sailor with age 18,

for each rating with at least 2 such sailors"

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5

rating minage

3 25.5

7 35.0

8 25.5

rating age

1 33.0

3 25.5

3 63.5

3 25.5

7 45.0

7 35.0

8 55.5

8 25.5

9 35.0

10 35.0

SELECT S.rating, MIN (S.age) AS minage

FROM Sailors S

WHERE S.age >= 18

GROUP BY S.rating

HAVING COUNT (*) > 1

22Advanced Databases – © P. Baumann

Conceptual Evaluation

 compute cross-product of relation-list

 discard tuples that fail qualification

 delete `unnecessary’ attributes

 partition remaining tuples into groups by value of attributes in grouping-list

 apply group-qualification to eliminate some groups

• Expressions in group-qualification must have a single value per group!

 generate one answer tuple per qualifying group

SELECT [DISTINCT] target-list

FROM relation-list

WHERE qualification

GROUP BY grouping-list

HAVING group-qualification

23Advanced Databases – © P. Baumann

"Age of the youngest sailor with age 18,

for each rating with at least 2 such sailors

and with every sailor under 60"

rating age

7 45.0

1 33.0

8 55.5

8 25.5

10 35.0

7 35.0

10 16.0

9 35.0

3 25.5

3 63.5

3 25.5

rating age

1 33.0

3 25.5

3 63.5

3 25.5

7 45.0

7 35.0

8 55.5

8 25.5

9 35.0

10 35.0

rating minage

7 35.0

8 25.5

GROUP BY … HAVING COUNT (*) > 1 AND EVERY (S.age <=60)

What is the result of

changing EVERY

to ANY?

rating age

1 33.0

3 25.5

3 63.5

3 25.5

7 45.0

7 35.0

8 55.5

8 25.5

9 35.0

10 35.0

24Advanced Databases – © P. Baumann

"Age of the youngest sailor with age 18,

for each rating with at least 2 sailors between 18 and 60"

SELECT S.rating, MIN (S.age) AS minage

FROM Sailors S

WHERE S.age >= 18 AND S.age <= 60

GROUP BY S.rating

HAVING COUNT (*) > 1

sid sname rating age

22 dustin 7 45.0

29 brutus 1 33.0

31 lubber 8 55.5

32 andy 8 25.5

58 rusty 10 35.0

64 horatio 7 35.0

71 zorba 10 16.0

74 horatio 9 35.0

85 art 3 25.5

95 bob 3 63.5

96 frodo 3 25.5

Answer relation:

Sailors instance:

rating minage

3 25.5

7 35.0

8 25.5

25Advanced Databases – © P. Baumann

"Age of the youngest sailor with age 18,

for each rating with at least 2 sailors (of any age)"

 HAVING clause can contain subquery

 Compare with query where we

considered only ratings with 2 sailors over 18:

What if HAVING clause is replaced by:

• HAVING COUNT(*) >1

SELECT S.rating, MIN(S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING (SELECT COUNT (*)

FROM Sailors S2
WHERE S.rating=S2.rating) > 1

SELECT S.rating, MIN(S.age)

FROM Sailors S

WHERE S.age >= 18

GROUP BY S.rating

HAVING COUNT (*) > 1

26Advanced Databases – © P. Baumann

 Field values in a tuple are sometimes

unknown (e.g., a rating has not been assigned)

or inapplicable (e.g., no spouse‟s name)

• SQL provides a special value null for such situations

 Null complicates many issues, e.g.:

• Special operators needed to check if value is/is not null

• Is rating>8 true or false when rating is equal to null?

• What about AND, OR and NOT connectives?

• We need a 3-valued logic (true, false and unknown)

• Meaning of constructs must be defined carefully

• e.g., WHERE clause eliminates rows that don’t evaluate to true

• New operators (in particular, outer joins) possible/needed

Null Values

27Advanced Databases – © P. Baumann

General Constraints

 Useful when more general ICs

than keys are involved

 Can use queries

to express constraint

 Constraints can be named

CREATE TABLE Sailors

(sid INTEGER,

sname CHAR(10),

rating INTEGER,

age REAL,

PRIMARY KEY (sid),

CHECK (rating >= 1 AND rating <= 10)

)

CREATE TABLE Reserves

(sname CHAR(10),

bid INTEGER,

day DATE,

PRIMARY KEY (bid,day),

CONSTRAINT noInterlakeRes

CHECK (`Interlake‟ <> (SELECT B.bname

FROM Boats B

WHERE B.bid=bid))

)

28Advanced Databases – © P. Baumann

Assertions

CREATE TABLE Sailors

(sid INTEGER,

sname CHAR(10),

rating INTEGER,

age REAL,

PRIMARY KEY (sid),

CHECK

((SELECT COUNT (S.sid) FROM Sailors S)

+ (SELECT COUNT (B.bid) FROM Boats B) < 100)

)

 CHECK constraint is

awkward and wrong!

 If Sailors is empty,

number of Boats tuples can be

anything

CREATE ASSERTION smallClub

CHECK

((SELECT COUNT (S.sid) FROM Sailors S)

+ (SELECT COUNT (B.bid) FROM Boats B) < 100

)

Number of boats
+ number of sailors
is < 100

 ASSERTION is the right solution:

not associated with either table

29Advanced Databases – © P. Baumann

Triggers

 Trigger: procedure that starts automatically

if & when specified changes occur to the database

 Three parts ("ECA rules"):

• Event -- activates the trigger

• Condition -- tests whether the triggers should run

• Action -- what happens if the trigger runs

30Advanced Databases – © P. Baumann

Triggers: Examples (SQL:1999)

CREATE TRIGGER totalMark

AFTER INSERT ON Student

FOR EACH ROW

INSERT INTO FinalMark VALUES(new.marks)

CREATE TRIGGER NoSalaryDecrease

BEFORE UPDATE ON Employees

FOR EACH ROW

BEGIN

IF NEW.salary < OLD.salary THEN

ROLLBACK

END IF;

END

31Advanced Databases – © P. Baumann

Triggers: Advanced Example

CREATE TRIGGER youngSailorUpdate

AFTER INSERT ON Sailors

REFERENCING NEW TABLE NewSailors

FOR EACH STATEMENT

INSERT

INTO YoungSailors(sid, name, age, rating)

SELECT sid, name, age, rating

FROM NewSailors N

WHERE N.age <= 18

32Advanced Databases – © P. Baumann

Summary

 SQL important factor for acceptance of relational model

• more natural than earlier, procedural query languages:

sets + few generic operations on them

• Relationally complete = as powerful as relational algebra (in fact, more expressive)

• Not computationally complete!

 Set orientation good basis for declarative query language

• Declarative vs imperative

 Triggers & constraints

 null

33Advanced Databases – © P. Baumann

Key Performance Factors

 Ref: discussion "what are the key points to improve the query performance"

on the LinkedIn Database list

34Advanced Databases – © P. Baumann

PS: A Moderately Complex Query

