C>ONSTRUCTOR
UNIVERSITY

SQL

> SELECT * FROM users WHERE clue > 0
0 rows returned

Advanced Databases — © P. Baumann 1

C>ONSTRUCTOR
UNIVERSITY

Conceptual Evaluation Strategy

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualification

= Semantics defined in terms of conceptual evaluation strategy:

» Compute cross-product of relation-list
« Discard resulting tuples failing qualification
 Delete attributes not in target-list

 [f DISTINCT: eliminate duplicate rows

= probably least efficient way to compute query!

« optimizer will find more efficient strategies

Advanced Databases — © P. Baumann 2

C>ONSTRUCTOR
UNIVERSITY

Join

Join = several tables addressed in one query

SELECT target-list
FROM Relation1 R1, Relation2 R2, ...
WHERE qualification

List of relations in FROM clause determine cross product

Frequently cross-relation conditions on attribute values to restrict results

Most common: R1.attr1 = R2.attr2

° ex; SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

Advanced Databases — © P. Baumann 3

C>ONSTRUCTOR
UNIVERSITY

More Joins

= T=R XS
* Firstbuild R x S, then apply o
= (eneralization of equi-join: A ©6 B where 06 one of =, <, ...

= Today, more general: G can be any predicate

= Common join types [Quest]:

{NDn-Equi [Theta]](_ 4[SQL Join J

Join

—» Left Outer Join

Y Y Y Y

-
{ Equi Join o« Inner Join } [Self Join } { Cross Join } [Quter Join » Right Quter Jein

—3» Full Quter Join

Advanced Databases — © P. Baumann 4

https://www.quest.com/community/blogs/b/database-management/posts/an-overview-of-sql-join-types-with-examples

C>ONSTRUCTOR
UNIVERSITY

Even More on Joins

SELECT * FROM A JOIN B ON A.id=B.d;
SELECT * FROM A, B WHERE A.id=B.id;

OUTER JOINS INNER JOIN

LEFT JOIN RIGHT JOIN FULL JOIN
SELECT * FROM A LEFT |OIN B SELECT * FROM A RIGHT JOIN B SELECT * FROM A FULL JOIN B
ON A.id=B.id ON B.id=A.d ON A.id=B.id

WHERE B.id IS5 NULL WHERE A.id IS NULL WHERE A.id IS NULL OR B.id is NULL

Advanced Databases — © P. Baumann

Boats

Sailors
SELECT S.sid

FROM Sailors S, Reserves R
WHERE S.sid=R.sid

= Would adding DISTINCT to this query make a difference?

Advanced Databases — © P. Baumann 6

rating

age

C>ONSTRUCTOR
UNIVERSITY

"Sailors who've reserved at least 1 boat"

o O

10/10/96
11/12/96
10/10/96
11/12/96
10/10/96
11/12/96

(sid) sname
22 Dustin
22 Dustin
31 Lubber
31 Lubber
58 Rusty
58 Rusty
(sid) sname
22 Dustin
58 Rusty

(sid) bid
22 101
58 103
22 101
58 103
22 101
58 103
(sid) bid
22 101
58 103

10/10/96
11/12/96

C>ONSTRUCTOR

"sid’s of sailors who have reserved UNIVERSITY
a red or a green hoat”

= UNION: Can be used to compute the

union of any two union-compatible sets of SELECT S.sid
| FROM Sailors S, Boats B, Reserves R
tuples WHERE S.sid=R.sid AND R.bid=B.bid
« which themselves are the result of AND (B.color=Tred” OR B.color=green’)
SQL queries
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
- |f we replace OR by AND in the firSt WHERE S.sid=R.sid AND R.bid=B.bid
. AND B.color="red’
version, what do we get? UNION
SELECT S.sid

FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid
AND B.color="green’

Advanced Databases — © P. Baumann 7

C>ONSTRUCTOR

"sid’s of sailors who have reserved UNIVERSITY

a red and a green hoat”

= INTERSECT: Can be used to compute the
intersection of any two union-compatible
sets of tuples

Advanced Databases — © P. Baumann 8

SELECT S.sid
FROM Sailors S, Boats B1, Reserves R1,
Boats B2, Reserves R2
WHERE S.sid=R1.sid AND R1.bid=B1.bid
AND S.sid=R2.sid AND R2.bid=B2.bid
AND (B1.color="red’ AND B2.color="green’)

C>ONSTRUCTOR

"Find sid’s of sailors who have reserved"versm

a red and a green hoat”

= INTERSECT: Can be used to compute the
intersection of any two union-compatible
sets of tuples

SELECT S.sid
FROM Sailors S, Boats B1, Reserves R1,
Boats B2, Reserves R2
WHERE S.sid=R1.sid AND R1.bid=B1.bid
AND S.sid=R2.sid AND R2.bid=B2.bid
AND (B1.color="red’ AND B2.color="green’)

Sailors

b

—@— Boats

R Bl: red

R B2: green

o

Advanced Databases — © P. Baumann 9

C>ONSTRUCTOR

"Find sid’s of sailors who have reserved"versm
a red and a green hoat”

INTERSECT: Can be used to compute the
intersection of any two union-compatible
sets of tuples

Included in the SQL/92 standard,
but some systems don’t support it

Advanced Databases — © P. Baumann

SELECT S.sid
FROM Sailors S, Boats B1, Reserves R1,
Boats B2, Reserves R2
WHERE S.sid=R1.sid AND R1.bid=B1.bid
AND S.sid=R2.sid AND R2.bid=B2.bid
AND (B1.color="red’ AND B2.color="green’)

SELECT s.smey field!

FROM Sailors S, Boats B1, Reserves R1

WHERE S.sid=R1.sid AND R1.bid=B1.bid
AND B1.color="red’

INTERSECT

SELECT S.sid

FROM Sailors S, Boats B2, Reserves R2

WHERE S.sid=R2.sid AND R2.bid=B2.bid
AND B2.color="green’

C>ONSTRUCTOR

UNIVERSITY
Nested Queries
= Find names of sailors who've reserved boat #103:
SELECT S.sname SELECT S.sname
FROM Sailors S FROM Sailors S, Reserves R
WHERE S.sid IN (SELECT R.sid WHERE S.sid = R.sid and R.hid=103

FROM Reserves R
WHERE R.bid=103)

WHERE clause can itself contain an SQL query!
 Actually, so can FROM and HAVING clauses

To find sailors who've not reserved #103, use NOT IN

To understand semantics of nested queries,
think of a nested loops evaluation

» For each Sailors tuple, check the qualification by computing the subquery

Advanced Databases — © P. Baumann 11

C>ONSTRUCTOR
UNIVERSITY

More on Set-Comparison Operators

= We have already seen IN, EXISTS and UNIQUE
e Canalso use NOT IN, NOT EXISTS and NOT UNIQUE

= Also available: op ANY, op ALL, oponeof<, >, =, #, <, >

= "sailors whose rating is greater than that of sailor Horatio"

SELECT *
FROM Sailors S
WHERE S.rating > ANY (SELECT S2.rating
FROM Sailors S2
WHERE S2.sname = ‘Horatio’)

Advanced Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Rewriting INTERSECT Queries Using IN

= "sid’s of sailors who've reserved both a red and a green boat":

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid AND B.color="red’
AND S.sid IN (SELECT S2.sid
FROM Sailors S2, Boats B2, Reserves R2
WHERE S2.sid=R2.sid AND R2.bid=B2.bid
AND B2.color="green’)

Advanced Databases — © P. Baumann

C>ONSTRUCTOR

UNIVERSITY
Set Difference in SQL
(1) SELECT S.sname
: FROM Sailors S
= "sailors who have reserved WHERE. NOT EXISTS
all boats" ((SELECT B.bid
FROM Boats B)
EXCEPT
= Let's do it the hard way, (SFE{LOEﬁTRSS-Z'rdveS -
without EXCEPT: WHERE R.sid=S.sid))
(2) SELECT S.sname
FROM Sailors S
Sailors S such that ... WHERE NOT EXISTS (SELECT B.bid
FROM Boats B
there is no boat B without ... WHERE NOT EXISTS (SELECT R.bid
FROM Reserves R
a Reserves tuple showing S reserved B WHERE R.bid=B.bid

AND R sid=S.sid))

Advanced Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Aggregate Operators

= Summary information instead of value list

SELECT COUNT (%)

COUNT(*) FROM Sailors S
COUNT([DISTINCT] A) SELECT COUNT (DISTINCT S rating
SUM([DlSTINCT] A) WHERE S.sname="Bob’

AVG([DISTINCT] A) e
MAX(A) FROM Sailors S
|\/||N(A) WHERE S.rating=10

\ SELECT S.sname
A: single column FROM Sailors S
WHERE S.rating= (SELECT MAX(S2.rating)
FROM Sailors S2)

Advanced Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Set Operations: Summary

SELECT S1.a,S2.b FROM S1,52 = EXISTS(S)

e S1x3S2=[<ab>|aeS1,beS2] e S={}
= S1 UNION S2 = {tINS2 t=ANY(S2)
e S1US2=[t|teS1v1teS2] e teS2
= S1INTERSECT S2 = top ANY(S) t op SOME(S)
e S1TNS2=[t|teS1 AteS2] « IxeS:topx
= S1EXCEPTS? ° (tops1)v...v(topsn) fOI‘SiES
o« S1\82=[t]|teS1 AtegS2] = topALL(S)
e VxeS:topx
= SUM(S.num), AVG(), ... o« (tops)A..A(tops,) forseS

> t.num
teS

Advanced Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Breaking the Set: ORDER BY

= 5o far: Query results are (multi) sets, hence unordered
Sometimes: need result sorted

= ORDER BY clause does this:

SELECT [DISTINCT] target-list
FROM relation-list

WHERE qualification

ORDER BY sort-list [ASC|DESC]

= sort-list: list of attributes for ordering (ascending or descending order)

= Ex: “Names of all sailors, SELECT S.sname

In alphabetical order” FROM Sailors S
ORDER BY S.sname

Advanced Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Grouping

= 5o far: aggregate operators applied to all (qualifying) tuples.
Sometimes: apply to each of several groups of tuples

= Consider: "age of the youngest sailor for each rating level"

 Unknown # of rating levels, and rating values for levels

* |f we knew rating values go from 1 to 10:
can write loop of 10 queries:

...or use GROUP BY:
SELECT M|N (S.age) FROM Sailors.S
FROM Sailors S GROUP BY S.rating

WHERE S.rating = i

Advanced Databases — © P. Baumann 18

C>ONSTRUCTOR
UNIVERSITY

Queries With GROUP BY and HAVING

SELECT [DISTINCT] target-list
FROM relation-list

WHERE qualification

GROUP BY grouping-list

HAVING group-qualification

target-list contains (i) attribute names, (ii) aggregate terms (ex: MIN(S.age))

grouping-list: list of attributes for grouping

group-qualification: group selection criterion (predicate on grouping-list)

target-list attributes must be subset of grouping-list

» Agroupis a set of tuples that have the same value for all attributes in grouping-list
Intuitively, each answer tuple corresponds to a group, and these attributes must have a single value per group

Advanced Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

"Age of the youngest sailor with age = 18,
for each rating with at least 2 such sailors”

Sailors instance:

SELECT S.rating, MIN (S.age) AS minage sid | sname |rating | age
FROM Sailors S 22 |dustin 7 145.0
WHERE S.age >= 18 29 |brutus | 1 |33.0
GROUP BY S.rating 31 | lubber 3 |555

HAVING COUNT (*) > 1 32 | andy 8 1255

58 |rusty 10 [35.0
64 | horatio 7 135.0
71 | zorba 10 |16.0

74 |horatio 9 |35.0
85 |art 3 |25.5
95 |bob 3 1635
96 |frodo 3 |25.5

Advanced Databases — © P. Baumann

"Age of the youngest sailor with age = 18,

C>ONSTRUCTOR
UNIVERSITY

for each rating with at least 2 such sailors”

rating

age

Z
1
8
8
10
7
10

w w w o

45.0
33.0
55.5
25.5
35.0
35.0
16.0
35.0
25.5
63.5
25.5

rating

age

1

33.0

25.5
63.5
25.5

SELECT S.rating, MIN (S.age) AS minage
FROM Sailors S

WHERE S.age >= 18

GROUP BY S.rating

HAVING COUNT (*) > 1

45.0
35.0

95.5
25.5

O© 0 O N NjwWw wWw w

35.0

.Y
o

35.0

Advanced Databases — © P. Baumann

rating | minage
3 |[255
:> 7 |35.0
8 |[255

C>ONSTRUCTOR
UNIVERSITY

Conceptual Evaluation

SELECT [DISTINCT] target-list

= compute cross-product of relation-list FROM relation-list
. . o WHERE qualification
= discard tuples that fail qualification GROUP BY grouping-list

HAVING group-qualification
= delete unnecessary’ attributes

= partition remaining tuples into groups by value of attributes in grouping-list

= apply group-qualification to eliminate some groups

 Expressions in group-qualification must have a single value per group!

= generate one answer tuple per qualifying group

Advanced Databases — © P. Baumann

C>ONSTRUCTOR
"Age of the youngest sailor with age > 18, UNIVERSITY

for each rating with at least 2 such sailors
and with every sailor under 60"

GROUP BY ... HAVING COUNT (*) > 1 AND EVERY (S.age <=60)

i) | e rating | age
7 [45.0 8390
; 22:(5) >\>gé§§</ > rating | minage
7 |[35.0
8 (255 —T1 3 |55 8 255
10 |35.0 2 450 :
7 135.0
10 |16.0 71350
8 |[55.5 :
9 |35.0 3 |oss What is the result of
3|23 ' changing EVERY
3 1635 9 1350 o ANY?
3 25.5 101350 '
Advanced Databases — © P. Baumann 2

C>ONSTRUCTOR

_ _ UNIVERSITY
"Age of the youngest sailor with age > 18,
for each rating with at least 2 sailors between 18 and 60"
SELECT S.rating, MIN (S.age) AS minage Sailors instance:
FROM Sailors S sid [sname |rating | age
WHERE S.age >= 18 AND S.age <= 60 22 | dustin 7 1450

GROUP BY S.rating

HAVING COUNT (*) > 1 29 | brutus 1 [33.0

31 | lubber 8 [55.5
32 |andy 8 |255
58 |rusty 10 [35.0

Answer relation:

JELTG] IIIECEe 64 |horatio 7 135.0
3 255 71 | zorba 10 |16.0
71350 |74 horatio| 9 |35.
8 255 | |g5|art 3 [255

95 |bob 3 1635
96 |frodo 3 |25.5

Advanced Databases — © P. Baumann

"Age of the youngest sailor with age > 18, ONNERSITY

for each rating with at least 2 sailors (of any age)"

SELECT S.rating, MIN(S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING (SELECT COUNT (%)
FROM Sailors S2
WHERE S.rating=S2.rating) > 1

= HAVING clause can contain subquery

= Compare with query where we SELECT S.rating, MIN(S.age)

: : : , . FROM Sailors S
considered only ratings with 2 sailors over 18: WHERE S.age >= 18

What if HAVING clause is replaced by: GROUP BY S.rating
« HAVING COUNT(*) >1 " HAVING COUNT (*) > 1

Advanced Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Null Values

= Field values in a tuple are sometimes
unknown (e.g., a rating has not been assigned)
or inapplicable (e.g., no spouse’s name)

» SQL provides a special value null for such situations

= Null complicates many issues, e.g..

 Special operators needed to check if value is/is not null

* Is rating>8 true or false when rating is equal to null?
« What about AND, OR and NOT connectives?

» We need a 3-valued logic (true, false and unknown)

» Meaning of constructs must be defined carefully
+ e.9., WHERE clause eliminates rows that don’t evaluate to true

» New operators (in particular, outer joins) possible/needed

Advanced Databases — © P. Baumann

C>ONSTRUCTOR

UNIVERSITY
General Constraints
CREATE TABLE Sailors
(sid INTEGER,
sname CHAR(10),
= Useful when more general ICs rating INTEGER,
than keys are involved age REAL,
PRIMARY KEY (sid),
= Can use queries CHECK (rating >= 1 AND rating <= 10)
to express constraint)
. Constraint b d CREATE TABLE Reserves
onstraints can be name (sname CHAR(10)

bid INTEGER,
day DATE,
PRIMARY KEY (bid,day),
CONSTRAINT nolnterlakeRes
CHECK (‘Interlake’ <> (SELECT B.bname
FROM Boats B
WHERE B.bid=bid))

Advanced Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Assertions

e CREATE TABLE Sailors
» CHECK constraint is (sid INTEGER,

awkward and wrong! sname CHAR(10),

rating INTEGER, Number of boats

= |f Sailors is empty, '
Pty age REAL, | + number of sailors
number of Boats tuples can be PRIMARY KEY (sid), is < 100

anything CHECK
((SELECT COUNT (S.sid) FROM Sailors S)

+ (SELECT COUNT (B.bid) FROM Boats B) < 100)
)

CREATE ASSERTION smallClub

SETE CHECK

not associated with either table ((SELECT COUNT (S.Sid) FROM Sailors S)

+ (SELECT COUNT (B.bid) FROM Boats B) < 100

)

= ASSERTION is the right solution:

Advanced Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Triggers

= Trigger: procedure that starts automatically
if & when specified changes occur to the database

= Three parts ("ECA rules"):

Event -- activates the trigger
Condition -- tests whether the triggers should run

Action -- what happens if the trigger runs

Advanced Databases — © P. Baumann

Triggers: Examples (SQL:1999)

CREATE TRIGGER totalMark
AFTER INSERT ON Student
FOR EACH ROW
INSERT INTO FinalMark VALUES(new.marks)

CREATE TRIGGER NoSalaryDecrease
BEFORE UPDATE ON Employees
FOR EACH ROW
BEGIN
IF NEW.salary < OLD.salary THEN
ROLLBACK
END IF;
END

Advanced Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

C>ONSTRUCTOR
UNIVERSITY

Triggers: Advanced Example

CREATE TRIGGER youngSailorUpdate

AFTER INSERT ON Sailors

REFERENCING NEW TABLE NewSailors

FOR EACH STATEMENT

INSERT

INTO YoungSailors(sid, name, age, rating)
SELECT sid, name, age, rating
FROM NewSailors N
WHERE N.age <= 18

Advanced Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Summary

SQL important factor for acceptance of relational model

« more natural than earlier, procedural query languages:
sets + few generic operations on them

 Relationally complete = as powerful as relational algebra (in fact, more expressive)
 Not computationally complete!

Set orientation good basis for declarative query language

 Declarative vs imperative

Triggers & constraints

null

Advanced Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Key Performance Factors

Mark Fugate - My experience is that proper, or highest normal form normalization takes
care of the first half of the optimization process by reducing the size of the stored data and
reducing the numbers of operations required to maintain the data.

Query plans and query behaviours tell us how to properly index. Server tuning includes the
proper storage media and knowledge of file systems and media tuning. Understanding
yvour servers and knowing how to tune the OS, file systems, storage and kernel is all part of
being a DBA.

Further, keeping SQL out of the client code makes all of the above attainable. | force all
client applications in our shop to use stored procedures only, This gives me complete
control over indexes, table structures, and all queries ensuring that nothing obnoxious
enters the database,

= Like

= Ref: discussion "what are the key points to improve the query performance”
on the LinkedIn Database list

Advanced Databases — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

PS: A Moderately Complex Query

SELECT stadtbezirk, stadtteil, name, stadtteilchar, 'touche' AS entstehung, the_geom FROM
(SELECT foo3.stadtbezirk, foo3.stadtteil, foo3.name, foo3.stadtteilchar, foo3.the geom FROM
(SELECT foo.gid, max(foo.laengste) AS laengste FROM
(SELECT a.qgid, b.stadtbezirk, b.stadtteil, b.name, b.stadtteilchar,

(ST_Length(ST_Intersection(a.the_geom, ST_Union(b.the_geom)))) AS laengste
FROM symdif a, dump b
GROUP BY a.qgid, a.the geom, b.stadtbezirk, b.stadtteil, b.name, b.stadtteilchar
HAVING ST_Touches(a.the_geom, ST_Union(b.the_geom))
ORDER BY a.gid) AS foo

GROUP BY foo.gid) AS foo2

r(SELECT a.gid, b.stadtbezirk, b.stadtteil, b.name, b.stadtteilchar, a.the_geom AS the geom,
(ST_Length(ST_Intersection(a.the_g=om, ST_Union(b.the_geom)))) AS laengste

FROM symdif a, dump b
GROUP BY a.gid, a.the_geom, b.stadtbezirk, b.stadtteil, b.name, b.stadtteilchar

HAVING ST_Touches(a.the_geom, ST_Union(b.the_geom))) AS foo3

WHERE (foo2.qgid = foo3.gid AND foo2.laengste = foo3.laengste)
GROUP BY foo2.gid, foo3.stadtbezirk, foo3.stadtteil, foo3.name, foo3.stadtteilchar,
foo3.laengste, foo2.laengste, foo3.the _geom) AS foo4

Advanced Databases — © P. Baumann

