
1Advanced Databases – © P. Baumann

Normal Forms

2Advanced Databases – © P. Baumann

The Evils of Redundancy

 Redundancy at the root of several relational schema problems

• redundant storage, insert/delete/update anomalies

 Integrity constraints identify problems and suggest refinements

• in particular: functional dependencies

Dept_id budget Emp_id Emp_name salary
1 100 1 John Williams 60
1 100 2 Phil Coulter 50
2 200 3 Norah Jones 45
3 300 4 Anastacia 40

3Advanced Databases – © P. Baumann

 Let R be relation, X and Y sets of attributes of R

 Functional dependency (FD) X  Y holds over relation R

if, for every allowable instance r of R:

• t1 r, t2 r:

X(t1) = X(t2) Y(t1) = Y(t2)

• FDs in example?

Functional Dependencies

Dept_id budget Emp_id Emp_name salary
1 100 1 John Williams 60
1 100 2 Phil Coulter 50
2 200 3 Norah Jones 45
3 300 4 Anastacia 40

 K is a candidate key for R means that K  R

• K  R does not require K to be minimal!

 FD is a statement about all allowable relation instances

• Must be identified based on semantics of application

• Given some allowable instance r1 of R,
we can check if it violates some FD f, but we cannot tell if f holds over R!

4Advanced Databases – © P. Baumann

Example: Constraints on Entity Set

 Consider relation obtained from Hourly_Emps:

• Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked)

 Notation: relation schema by listing the attributes: SNLRWH

• set of attributes {S,N,L,R,W,H}

• Using equivalently to relation name (e.g., Hourly_Emps for SNLRWH)

 Some FDs on Hourly_Emps:

• ssn is key: S  SNLRWH

• rating determines hrly_wages: R W

5Advanced Databases – © P. Baumann

Example (Contd.)

 Problems due to R W :

• Update anomaly:

change W in just the 1st tuple

of SNLRWH?

• Insertion anomaly:

insert employee and don’t know the

hourly wage for his rating?

• Deletion anomaly:

delete all employees with rating 5

lose information about the wage

for rating 5!

S N L R W H

123-22-3666 Attishoo 48 8 10 40
231-31-5368 Smiley 22 8 10 30
131-24-3650 Smethurst 35 5 7 30
434-26-3751 Guldu 35 5 7 32
612-67-4134 Madayan 35 8 10 40

Will 2 smaller tables be better?

S N L R H

123-22-3666 Attishoo 48 8 40

231-31-5368 Smiley 22 8 30

131-24-3650 Smethurst 35 5 30

434-26-3751 Guldu 35 5 32

612-67-4134 Madayan 35 8 40

Hourly_Emps2

R W

8 10

5 7

Wages

6Advanced Databases – © P. Baumann

Normal Forms & Functional Dependencies

 normal forms avoid / minimize certain kinds of problems

• helps to decide on decomposing relation

 Role of FDs in detecting redundancy

• No FDs hold: no redundancy

• Given relation R with 3 attributes ABC and FD A  B:

Several tuples might have the same A value; if so, they all have the same B value

It's all about hidden repeating information across tuples

7Advanced Databases – © P. Baumann

First Normal Form

 First Normal Form (1NF)

• eliminates attributes containing sets = repeating groups

• ...by flattening: introduce separate tuples with atomic values

 Ex:

• Skills not f.d. on id, nor name!

1NF

2NF

3NF

BCNF

 Oops: lost primary key property.

• Will fix that later.

 Why good? Repeating groups complicate storage management!

• Experimental DBMSs exist for non-1NF (NFNF, NF2) tables

id name skillsList

1 Jane {C,C++,SQL}

2 John {Java,python,SQL}

id name skill

1

1

1

Jane

Jane

Jane

C

C++

SQL

2

2

2

John

John

John

Java

Python

SQL

8Advanced Databases – © P. Baumann

Second Normal Form

 Second Normal Form (2NF):

• eliminates functional dependencies on a partial key

• by putting the fields in a separate table

from those that are dependent on the whole key

 Ex: ABCD with BC

becomes: ABD, BC

1NF

2NF

3NF

BCNF

9Advanced Databases – © P. Baumann

1NF

2NF

3NF

BCNF

 Relation R with FD set F is in 3NF if, for all X  A in F+,

• Either A X (called a trivial FD)

• Or X contains a key for R

• Or A is part of some key for R

Third Normal Form (3NF)

S N L R W H

123-22-3666 Attishoo 48 8 10 40
231-31-5368 Smiley 22 8 10 30
131-24-3650 Smethurst 35 5 7 30
434-26-3751 Guldu 35 5 7 32
612-67-4134 Madayan 35 8 10 40

 In plain words:

• 3NF eliminates functional dependencies on non-key fields
by putting them in a separate table

• = in 3NF, all non-key fields
are dependent on

the key,
the whole key,
and nothing but the key

• Ex:

10Advanced Databases – © P. Baumann

Why Is 3NF Good?

 If 3NF violated by X  A, one of the following holds:

 X subset of some key K

• We store (X, A) pairs redundantly

 X not a proper subset of any key

• Which means: for some key K, there is a chain of FDs K  X  A

• Which means: we once introduced keys to capture dependencies,

but now we have attributes dependent on a non-key attribute!

 …so non-3NF means dangerous updates!

11Advanced Databases – © P. Baumann

What Does 3NF NOT Achieve?

 Some redundancy possible with 3NF

 Ex: Reserves SBDC, S  C, C  S

• is in 3NF

• but S C means:

for each reservation of sailor S, same (S, C) pair is stored

 …so we still need to capture "nests" inside the keys

12Advanced Databases – © P. Baumann

Boyce-Codd Normal Form (BCNF)

 Relation R with FDs F is in BCNF if, for all X  A in F+,

• Either A X (called a trivial FD)

• Or X contains a key for R

• Or A is part of some key for R

 In other words:

R in BCNF  only key-to-nonkey constraints FDs left

 = No redundancy in R that can be detected using FDs alone

 = No FD constraints "hidden in data"

1NF

2NF

3NF

BCNF

14Advanced Databases – © P. Baumann

Discussion: 3NF vs. BCNF

 Always possible?

• 3NF always possible, is “nice” (lossless-join, dependency-preserving)

• BCNF not always possible

 3NF compromise used when BCNF not achievable

• Ex: performance considerations

• Ex: cannot find ``good’’ decomp (see next)

15Advanced Databases – © P. Baumann

Decomposition of a Relation Scheme

 Given relation R with attributes A1 ... An

 decomposition of R = replacing R by two or more relations such that:

• Each new relation scheme contains a subset of the attributes of R

(and no additional attributes), and

• Every attribute of R appears as an attribute of one of the new relations

 E.g., decompose SNLRWH into SNLRH and RW

16Advanced Databases – © P. Baumann

Example Decomposition

 SNLRWH has FDs

S  SNLRWH, R W, N  SN

 2nd FD causes 3NF violation:

W values repeatedly associated

with R values (and vice versa)!

 Easiest fix: create relation RW to store assocs w/o dups,

remove W from main schema

= decompose SNLRWH into SNLRH and RW

S N L R W H

123-22-3666 Attishoo 48 8 10 40
231-31-5368 Smiley 22 8 10 30
131-24-3650 Smethurst 35 5 7 30
434-26-3751 Guldu 35 5 7 32
612-67-4134 Madayan 35 8 10 40

S N L R H

123-22-3666 Attishoo 48 8 40
231-31-5368 Smiley 22 8 30
131-24-3650 Smethurst 35 5 30
434-26-3751 Guldu 35 5 32
612-67-4134 Madayan 35 8 40

Hourly_Emps2

R W

8 10
5 7

Wages

If we just store projections of SNLRWH

tuples onto SNLRH and RW,

are there any potential problems?

17Advanced Databases – © P. Baumann

3 Potential Problems with Decomp

 Some queries become more expensive

• e.g., How much did sailor Joe earn? (salary = W*H)

 may not be able to reconstruct original relation

• Fortunately, not in the SNLRWH example

• 

18Advanced Databases – © P. Baumann

A B C

0 1 2

3 1 4

A B A B C B C

0 1 0 1 4 1 2

3 1 3 1 2 1 4

0 1 2

3 1 4

Lossless Join: A Counter Example

(A,B) x (B,C)

What's wrong?

19Advanced Databases – © P. Baumann

3 Potential Problems with Decomp

 Some queries become more expensive

• e.g., How much did sailor Joe earn? (salary = W*H)

 may not be able to reconstruct original relation 

• Fortunately, not in the SNLRWH example

 Checking some dependencies may require joining decomposed relations

• Fortunately, not in the SNLRWH example

 Tradeoff: Must consider these issues vs. redundancy

20Advanced Databases – © P. Baumann

Summary of Schema Refinement

 BCNF = free of redundancies that can be detected using FDs

• BCNF good heuristic (consider typical queries!)

• Check FDs !

• Next best: 3NF

 When not BCNF?

• not always possible

• unsuitable, given typical queries - performance requirements

 Use decompositions only when needed!

NF pocket guide

22Advanced Databases – © P. Baumann

Pocket Guide to NFs

• 1NF = no repeating groups

• 2NF = 1NF + no partial key  non-key

• 3NF = 2NF + no non-key  anything

• BCNF = 3NF + no key  key

Normalization of table R with FD set :

• For all FDs F = „X  Y“:

• Create additional table RF(X,Y)

• Remove Y from R, but keep X

• Drop duplicates

arising from „X  Y, Y  X“ cycles

• Crosscheck all new tables created

against all FDs for decomposition need

candidate key

R: A B C D E F {G1,G2,G3}
candidate key

3NF 1NF

= ====

BCNF

C

2NF

