
1Advanced Databases – © P. Baumann

Transaction Management
Ramakrishnan & Gehrke, Chapter 14+

2Advanced Databases – © P. Baumann

Transactions

 Concurrent execution of user requests is essential for good DBMS

performance

• User requests arrive concurrently

• Because disk accesses are frequent, and relatively slow, it is important to keep the

cpu humming by working on several user programs concurrently

 user’s program may carry out many operations on data retrieved,

but DBMS only concerned about data read/written from/to database

 transaction (TA) := the DBMS’s abstract view of a user program:

a sequence of (SQL) reads and writes that is executed as a unit

3Advanced Databases – © P. Baumann

Concurrency in a DBMS

 Users submit TAs, can think of each (trans)action as execution unit

• Concurrency achieved by DBMS by interleaving TAs

• TA must leave DB in consistent state

assuming DB is consistent when TA begins

• ICs declared in CREATE TABLE, CHECK constraints, etc.

 Issues:

• Effect of interleaving TAs

• Crashes

• Performance of concurrency control

4Advanced Databases – © P. Baumann

Atomicity of Transactions

 Two possible TA endings:

• commit after completing all its actions – data must be safe in DB

• abort (by application or DBMS) – must restore original state

 Important property guaranteed by the DBMS: TAs atomic

• Perception: TA executes all its actions in one step, or none

 Technically: DBMS logs all actions

• can undo actions of aborted TAs

• Write-ahead logging (WAL): save record of action before every update

5Advanced Databases – © P. Baumann

ACID

 TA concept includes four basic properties:

 Atomic

• all TA actions will be completed, or nothing

 Consistent

• after commit/abort, data satisfy all integrity constraints

 Isolation

• any changes are invisible to other TAs until commit

 Durable

• nothing lost in future; failures occurring after commit cause no loss of data

6Advanced Databases – © P. Baumann

Transaction Syntax in SQL

 START TRANSACTION start TA

 COMMIT end TA successfully

 ROLLBACK abort TA (undo any changes)

 If none of these TA management commands is present,

each statement starts and ends its own TA

• including all triggers, constraints,…

7Advanced Databases – © P. Baumann

Anatomy of Conflicts

 Consider two TAs:

• Intuitively, first TA transfers $100 from B’s account to A’s account

• second TA credits both accounts with a 6% interest payment

T1: BEGIN A=A-100, B=B+100 END

T2: BEGIN A=1.06*A, B=1.06*B END

 no guarantee that T1 will execute before T2 or vice-versa, if both are

submitted together

 However, net effect must be equivalent to these two TAs

running serially in some order

8Advanced Databases – © P. Baumann

Anatomy of Conflicts (contd.)

 Consider a possible interleaving (schedule):

T1: A=A-100, B=B+100

T2: A=1.06*A, B=1.06*B

 This is OK. But what about:

T1: A=A-100, B=B+100

T2: A=1.06*A, B=1.06*B

 The DBMS’s view of the second schedule:

T1: R(A), W(A), R(B), W(B)

T2: R(A), W(A), R(B), W(B)

9Advanced Databases – © P. Baumann

Anomalies from Interleaved Execution

 Reading uncommitted data (R/W conflicts, “dirty reads”):

T1: R(A), W(A), R(B), W(B), Abort

T2: R(A), W(A), Commit

T1: R(A), R(A), W(A), Commit

T2: R(A), W(A), Commit

T1: W(A), W(B), Commit

T2: W(A), W(B), Commit

 Unrepeatable reads (R/W conflicts):

 Overwriting uncommitted data (W/W conflicts):

10Advanced Databases – © P. Baumann

Scheduling Transactions: Definitions

 Serial schedule:

Schedule that does not interleave the actions of different TAs

 Equivalent schedules:

For any database state, the effect (on the set of objects in the database) of

executing the first schedule is identical to the effect of executing the

second schedule

 Serializable schedule:

A schedule equivalent to some serial execution of the TAs

 each TA preserves consistency

every serializable schedule preserves consistency

11Advanced Databases – © P. Baumann

 Core issues: What lock modes? What lock conflict handling policy?

 Common lock modes: SX

• Each TA must obtain an S (shared) lock before reading,
and an X (exclusive) lock before writing

Lock-Based Concurrency Control

| S X
--+-----
S | + -
X | - -

 Lock conflict handling

• Abort conflicting TA / let it wait / work on previous version

 Locking protocols

• two-phase locking (strict, non-strict, conservative, …) – next!

• Timestamp based

• Multi-version based

• Optimistic concurrency control

12Advanced Databases – © P. Baumann

Two-Phase Locking Protocol

 2PL

• All locks acquired before first release

• cannot acquire locks after releasing first lock

 allows only serializable schedules

• but complex abort processing

begin commit

begin commit

 Strict 2PL

• Write locks released at TA end

• Read locks released earlier (more concurrency)

 Strict 2PL simplifies TA aborts

Phase 2: Shrinking

read-lock (Z)

Phase 1: Growing

read-lock (X)

write-lock (X)

write-lock (Y)

unlock (X)

unlock (Y)

13Advanced Databases – © P. Baumann

2PL Variants

 Basic 2PL

 Conservative 2PL

• All locks acquired before transaction execution

• Makes sure TA can get necessary locks

 Strict 2PL

• Releasing of write-locks only after TA end

• Avoid cascading abort

 Rigorous 2PL

• Releasing of all locks only after TA end

14Advanced Databases – © P. Baumann

Limitations of 2PL

 Some serializable schedules may not be permitted

• Performance not optimal

 2PL (and locking in general) may cause deadlocks and starvation

• Deadlock: no transactions can proceed

• Starvation: some transaction wait forever

15Advanced Databases – © P. Baumann

 Isolation level directives: summary about TA's intentions, placed before TA

• SET TRANSACTION READ ONLY

TA will not write can be interleaved with other read-only TAs

• SET TRANSACTION READ WRITE

(default)

 assists DBMS optimizer

 Example: Choosing seats in airplane

• Find available seat, reserve by setting occ to TRUE; if there is none, abort

• Ask customer for approval. If so, commit, otherwise release seat by setting occ to
FALSE, goto 1

• two "TA"s concurrently: can have dirty reads for occ – uncritical! (why?)

Isolation Levels

16Advanced Databases – © P. Baumann

Isolation Levels (contd.)

 Refinement:

SET TRANSACTION READ WRITE ISOLATION LEVEL…

• …READ UNCOMMITTED

allows TA to read dirty data

• …READ COMMITTED

forbids dirty reads, but allows TA to issue query several times & get different results

(as long as TAs that wrote them have committed)

• …REPEATABLE READ

ensures that any tuples will be the same under subsequent reads.

However a query may turn up new (phantom) tuples

• …SERIALIZABLE

default; can be omitted

17Advanced Databases – © P. Baumann

Effects of New Isolation Levels

 Consider seat choosing algorithm:

 If run at level READ COMMITTED

• seat choice function will not see seats as booked

if reserved but not committed (roll back if over-booked)

• Repeated queries may yield different seats (other TAs booking in parallel)

 If run at REPEATABLE READ

• any seat found in step 1 will remain available in subsequent queries

• new tuples entering relation (e.g. switching flight to larger plane) seen by new queries

18Advanced Databases – © P. Baumann

Write-Ahead Logging (WAL)

 All change actions recorded in log file(s)

• Not single tuples, but complete pages affected

• Before-Image (BFIM) + After-Image (AFIM) allow choice of redo or undo

• Ti writes an object: TA identifier + BFIM + AFIM

• Ti commits/aborts: TA identifier + commit/abort indicator

• Log records chained by TA id easy to undo specific TA

 Log written before database update = “write ahead”

• Simply append to log file, so fast

 Log is beating heart of DBMS!

• Use fast storage

• often duplexed & archived on stable storage

19Advanced Databases – © P. Baumann

WAL in Action (PostgreSQL)

[www.interdb.jp]

AFIMs

20Advanced Databases – © P. Baumann

[sqliteforensictoolkit.com]

WAL Inspection

21Advanced Databases – © P. Baumann

Crash Recovery

 Log also used to recover from system crashes

• Abort all TAs active at crash time

• Re-run changes committed, but not yet permanent at crash time

 Aries recovery algorithm:

• Analysis: Scan log forward (from most recent checkpoint until crash) to identify

• all TAs that were active

• all dirty pages in the buffer pool

• Redo: repeat all updates to dirty pages in the buffer pool as needed

• to ensure that all logged updates are in fact carried out and written to disk

• Undo: nullify writes of all TAs active at crash time working backwards in log

• by restoring "before value" of update, which is in log record for update

22Advanced Databases – © P. Baumann

Performance Impact

 Lock contention

 Deadlock

 See NewSQL later!

23Advanced Databases – © P. Baumann

 Concurrency control & recovery: core DBMS functions

 Users need not worry about concurrency

• System automatically inserts lock/unlocking,

schedules TAs, ensures serializability (or what’s requested)

 ACID properties!

 Mechanisms:

• TA scheduling; Strict 2PL !

• Locks

• Write-ahead logging (WAL)

Summary

24Advanced Databases – © P. Baumann

Outlook: ACID vs BASE

 BASE (Basically Available Soft-state Eventual Consistency)

• Prefers availability over consistency

• Relaxing ACID

 CAP Theorem [proposed: Eric Brewer; proven: Gilbert & Lynch]:

In a distributed system you can satisfy at most 2 out of the 3 guarantees
• Consistency: all nodes have same data at any time

• Availability: system allows operations all the time

• Partition-tolerance: system continues to work in spite of network partitions

 Comparison:

• Traditional RDBMSs: Strong consistency over availability under a partition

• Cassandra: Eventual (weak) consistency, availability, partition-tolerance

25Advanced Databases – © P. Baumann

Discussion: ACID vs BASE

 Justin Sheely: “eventual consistency in well-designed systems does not

lead to inconsistency”

 Daniel Abadi: “If your database only guarantees eventual consistency, you

have to make sure your application is well-designed to resolve all

consistency conflicts. […] Application code has to be smart enough to deal

with any possible kind of conflict, and resolve them correctly”

• Sometimes simple policies like “last update wins” sufficient

• other apps far more complicated, can lead to errors and security flaws

• Ex: ATM heist with 60s window

• DB with stronger guarantees greatly simplifies application design

https://arstechnica.com/information-technology/2012/10/atm-heist-clears-1-million-exploiting-citigroup-e-payment-flaw/

