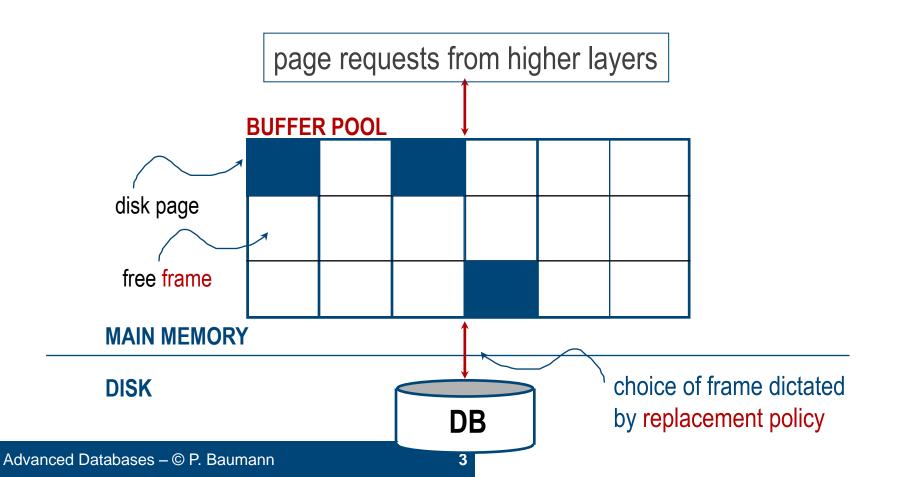


Storing Data: Database Caching

"Yea, from the table of my memory I'll wipe away all trivial fond records." -- Shakespeare, *Hamlet*


Disk Space Management

- Lowest layer of DBMS manages space on disk
- Higher levels call layer to:
 - allocate/de-allocate page
 - read/write page

Buffer Management in a DBMS

Table of <frame#, pageid> pairs (plus more, see next)

When Page is Requested ...

- If page not in pool:
 - Choose frame for replacement
 - If frame dirty, write to disk
 - Read page into frame
- Pin page & return address

• If possible, arrange blocks sequentially on disk

NB: 'page' ≈'block'

- minimize seek and rotational delay
- For sequential scan (access predictable!), pre-fetching is a big win

C>ONSTRUCTOR UNIVERSITY

More on Buffer Management

- Page requestor must unpin
 & indicate whether page has been modified
 - *dirty* bit
- Page in pool may be requested many times
 - *pin count:* page is candidate for replacement iff *pin count* == 0
- CC & recovery: additional I/O when replacing frame
 - Write-Ahead Log protocol

Buffer Replacement Policy

- Frame chosen for replacement by *replacement policy*:
 - Least-recently-used (LRU), Clock, MRU etc.
- Policy can have big impact on # of I/O's; depends on access pattern

DBMS vs. OS File System

OS does disk space & buffer mgmt: why not let OS manage these tasks?

- Differences in OS support: portability issues
- Some limitations
 - e.g., files can't span disks
- Buffer management in DBMS requires ability to:
 - pin page in buffer pool, force page to disk (CC & recovery!)
 - adjust replacement policy + pre-fetch pages based on access patterns in typical DB operations

Summary

- Disks provide cheap, non-volatile storage
 - Random access, but cost depends on location of page on disk
 - important to arrange data sequentially to minimize seek and rotation delays
- Buffer manager brings pages into RAM
 - Page stays in RAM until released by requestor
 - Written to disk when frame chosen for replacement (which is sometime after requestor releases the page)
 - Choice of frame to replace based on replacement policy
 - Tries to pre-fetch several pages at a time