
1Advanced Databases – © P. Baumann

Indexing
Ramakrishnan/Gehrke Ch. 8

“How index-learning turns no student pale
Yet holds the eel of science by the tail.”

-- Alexander Pope (1688-1744)

2Advanced Databases – © P. Baumann

Range Searches

 ``Find all students with gpa > 3.0’’

• sorted file (by gpa!), fixed-length records:

binary search to find first student, then scan to find rest

• Cost of binary search can be quite high

 Simple idea:

Create an `index’ file containing only key values + search values

• Can do binary search on (smaller) index file!

tuple 1 tuple 2 tuple Ntuple 3 Data File

k2 kNk1
Index File

3Advanced Databases – © P. Baumann

Indexes

 speeds up selections on predefined search key field(s)

• one relation (~file)

• Any attribute (except BLOB) can be search key for an index on the relation

 collection of data entries

• For efficient retrieval of all data entries k* for given key value k

 Index vs sorted files

• Both: search faster than just heap

• Updates: index much faster

4Advanced Databases – © P. Baumann

B+ Tree Indexes

 Ordered, balanced tree of degree m

 Non-leaf pages: index entries = keys & pointers

 Leaf pages: keys + data pointers; prev/next page chain

Index

pages

Leaf

pages

fill factor

P0 K1 P1 K2 P2 Km Pm

5Advanced Databases – © P. Baumann

B+-Tree Definition

 B+-Tree of Order m has the following properties...

• #1 - All leaf nodes at same level.

• #2 - nodes except root have [m/2]-1 … m-1 keys.

• #3 - non leaf nodes except root (i.e. all internal nodes) have at least m/2 children.

• #5 - non leaf node with n-1 keys have n number of children.

• #6 - key values in a node sorted in ascending order.

[http://btechsmartclass.com/data_structures/b-trees.html]

https://www.cs.usfca.edu/~galles/visualization/BTree.html

6Advanced Databases – © P. Baumann

B+ Tree: Point Search

 Find 28*? 29*?

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Entries < 17 Entries => 17

Note how data entries

in leaf level are sorted

7Advanced Databases – © P. Baumann

B+ Tree: Range Search

 all between 15* and 30*?

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Entries < 17 Entries => 17

Note how data entries

in leaf level are sorted

8Advanced Databases – © P. Baumann

More Exercises

 Consider

• # node reads from disk – determines speed

• # comparisons – not performance relevant, but for understanding mechanics

 Find 15, 20, 0

 Find all 11 – 15; 20 – 32

[https://condor.depaul.edu/ntomuro/courses/417/notes/lecture3.html]

9Advanced Databases – © P. Baumann

B+ Trees in Practice

 Typical fill-factor: 67% (outdated; today ~90%)

 Average fan-out: 133

 Typical capacities:

• Height 3: 1333 = 2,352,637 records

• Height 4: 1334 = 312,900,700 records

 Can often hold top levels in buffer pool:

• Level 1 = 1 page = 8 Kbytes

• Level 2 = 133 pages = 1 Mbyte

• Level 3 = 17,689 pages = 133 MBytes

10Advanced Databases – © P. Baumann

Hash-Based Indexes

 Goal: compute address without disk access

• get data in O(1)

 Idea: distribute data evenly into fixed number of “buckets”

• Compute location from key via Hashing function

• Ex: h(int r) = r*a mod b, b prime relative to a

• overflow pages

 Hash index = bucket set + hashing function

• Bucket = primary page + 0..n overflow pages

 only equality, no range queries

[Shankai Yan]

11Advanced Databases – © P. Baumann

Index-Only Plans

 Index can answer queries without retrieving tuples from relations

• Simple index:

• Composite index:

• More complex example:

SELECT E.dno, COUNT(*)

FROM Emp E

GROUP BY E.dno

<E.dno>

SELECT E.dno, MIN(E.sal)

FROM Emp E

GROUP BY E.dno

<E.dno,E.sal>

SELECT AVG(E.sal)

FROM Emp E

WHERE E.age=25 AND

E.sal BETWEEN 3000 AND 5000

<E. age,E.sal>

or

<E.sal, E.age>

12Advanced Databases – © P. Baumann

Index Selection Guidelines

 For each query in workload:

• relations accessed? attributes retrieved? selection/join conditions? How selective?

 For each update in workload:

• Type of update (INSERT/DELETE/UPDATE) + attributes affected

• attributes involved in selection/join conditions? How selective?

 Trade-off: Indexes can make queries faster, updates slower

• …and require disk space

 …a practitioner's approach:

• Consider most important queries in turn, improve only where necessary

13Advanced Databases – © P. Baumann

Summary

 Index = “summary file” to quickly find tuples

• Can have several indexes on table

• Hash-based for equality search

• Tree-based for range search, equality search

 Essential for tuning:

• Understanding query workload

• clear performance goals

