

Spatial Indexing

Ramakrishnan/Gehrke Ch. 28

Applications of Multidimensional Data

- Geographic Information Systems (GIS)
 - Geospatial information; service standards by Open Geospatial Consortium (OGC)
 - Vendors: ESRI, Intergraph, SmallWorld, ..., Oracle, ...; open-source: Grass, PostGIS, ...
 - All classes of spatial queries and data are common
- Computer-Aided Design / Manufacturing
 - spatial objects, ex: surface of airplane fuselage
 - Range queries and spatial join queries are common
- Multimedia Databases
 - Images, video, text, etc. stored and retrieved by content
 - First converted to *feature vector* form; high dimensionality
 - Nearest-neighbor queries are the most common

Multidimensional Data

- Point Data
 - = points in a multidimensional space
 - Ex: geographic locations; feature vectors extracted from text
- Region Data
 - = objects having spatial extent with location and boundary
 - typically geometric approximations: polygons etc. → vector data
- What about raster data such as satellite imagery?
 - = each pixel stores a measured value
 - Here vector data; raster data different story

Multidimensional Queries

- Point queries
 - "show Bremen"
- Spatial Range queries
 - "Find all hotels within a radius of 5 miles from the conference venue"
 - "Find all cities that lie on the Nile in Egypt"
 - 50 < age < 55 AND 80K < sal < 90K
 - 50 < Lat < 55 AND 80 < Long < 90
- Nearest-Neighbor queries
 - "Find the 10 cities nearest to Bremen"
 - "Find the city with population 500,000 or more that is nearest to Kalamazoo, MI"

Spatial Join queries

- "Find all cities near a lake"
- "Find all parts that touch the fuselage" (in airplane design)
- Expensive; join condition involves regions and proximity!

C>ONSTRUCTOR

UNIVERSITY

- Similarity queries
 - "Given a face, find the five most similar faces"
- ...plus aggregation, and more

Multiple B+ Trees

Query example:

select * from R where $a_0 < A < a_1$ and $b_0 < B < b_1$

- Problems:
 - Selects way too much data
 - Index space grows with dimensionality

Wanted: a Multi-Dimensional Index

• Requirements:

- any number of dimensions
- Symmetric behavior for all dimensions
- supports inserts and deletes gracefully
- Ideally, want to support non-point data as well (e.g., lines, shapes)
- Zillions of approaches and variants in literature
 - Grid file, Quad/Oct-tree, kdb-tree, space-filling curves, ...
 - Core idea always: spatial clustering of entries on disk
- we look into R-tree
 - widely used, in many variants

The R-Tree

- R-tree = tree-structured n-D index [Guttman 1984]
 - Discriminating value of B+-Tree substituted by bounding intervals (bbox)
 - Index search by bbox, not by exact (polygon) shape
- Leaf entry = < n-dimensional box, rid >
 - tightest bounding box for object

Sample R-Tree

Sample R-Tree (contd.)

Sample 3D R+-Tree [Wikipedia]

Search for Objects Overlapping Box Q

Current node := root; 1. If current node is non-leaf: for each entry <E, ptr>: if box E overlaps Q then search subtree identified by ptr; 2. If current node is leaf: for each entry <E, rid>: if box E overlaps Q then rid identifies an object that might overlap Q.

> May have to search several subtrees at each node! (B-tree equality search goes to just one leaf)

Summary

- Index support for multi-dimensional queries has many applications
 - GIS, CAD/CAM, ...: spatio-temporal, 2..4-D
 - multimedia indexing, statistical databases: non-spatial dimensions, 3-D..12-D..10,000-D...
- Main multidimensional query types:
 - Point, overlap, containment, nearest-neighbor
- Fundamental difference between space/time and feature spaces
 - <4D vs 1000s of dimensions
 - R-tree worse than sequential scan for 12+ D

Summary (contd.)

- Many approaches to multi-dimensional indexing
- R-tree approach widely used in GIS
 - Overall, works quite well for 2..4-D datasets
 - Several variants
- Issues
 - Not for high-dimensional datasets

