
1Advanced Databases – © P. Baumann

Query Processing:

Evaluation of Relational Operations
Jennifer Widom

2Advanced Databases – © P. Baumann

Steps in Database Query Processing
Parser – Checker - Views - Logical plan – Optim1 - Physical plan – Optim2 - Execution

parser &

translator
query

relational

algebra

expression

execution

planoptimizer
evaluation

engine

query

output

data
data

statistics

„logical plan“ „physical plan“

3Advanced Databases – © P. Baumann

Running Example

 Tables (what are the keys?):

 Query to find all EE students taking at least one CS course:

•

Student(ID, Name, Major)

Course(Num, Dept)

Taking(ID, Num)

SELECT Name

FROM Student, Course, Taking

WHERE Taking.ID = Student.ID

AND Taking.Num = Course.Num

AND Major = 'EE'

AND Dept = 'CS'

… plus subqueries, aggregates,

NULL, duplicates, ...

4Advanced Databases – © P. Baumann

Checker (Validation)

 Verifies query tree against database schema

• All tables in FROM clause exist

• All columns of tables exist

• No ambiguities in table references or unqualified attribute references (table names

usually added at this point)

• All comparisons, aggregations, etc. are type-compatible

 Where does info come from?

• System catalog

Parser – Checker - Views - Logical plan - Rewriter - Physical plan - Code gen. - Execution

5Advanced Databases – © P. Baumann

 Via view expander original query becomes:

View Expander

 Suppose Student is view:

SELECT Name

FROM Course, Taking, StudName, StudMajor

WHERE Taking.ID = StudName.ID AND Taking.Num = Course.Num AND

StudMajor.Major = 'EE' AND Course.Dept = 'CS' AND StudName.ID = StudMajor.ID

CREATE VIEW Student AS

SELECT StudName.ID, Name, Major

FROM StudName, StudMajor

WHERE StudName.ID = StudMajor.ID

SELECT Name

FROM Course, Taking, Student AS (SELECT StudName.ID, Name, Major

FROM StudName, StudMajor WHERE StudName.ID = StudMajor.ID)

WHERE Taking.ID = Student.ID AND Taking.Num = Course.Num AND

Student.Major = 'EE' AND Course.Dept = 'CS„ AND StudName.ID = StudMajor.ID

 "flattened":

Parser – Checker - Views - Logical plan – Optim1 - Physical plan – Optim2 - Execution

SELECT Name

FROM Student, Course, Taking

WHERE Taking.ID = Student.ID

AND Taking.Num = Course.Num

AND Major = 'EE'

AND Dept = 'CS'

StudName(ID, Name) StudMajor(ID, Major)

Student(ID, Name, Major)

6Advanced Databases – © P. Baumann

 Extended relational algebra

• Problem: SQL more than relational algebra additional complexity

 Leaf of logical plan = data source = table name

 Inner nodes:

• Basic operators: SELECT, PROJECT, CROSS-PRODUCT, UNION, DIFFERENCE

• Abbreviations: NATURAL-JOIN, THETA-JOIN, INTERSECT

• Extensions: RENAME, AGGREGATE/GROUP-BY, DISTINCT (+ others)

 Usually straightforward mapping

parse tree "naive" logical query plan

• Optimizer may rewrite to "better" plan

Logical Plan
Parser – Checker - Views - Logical plan - Rewriter - Physical plan - Code gen. - Execution

7Advanced Databases – © P. Baumann

Logical Query Tree: Notation Overview

 Logical query tree

= Logical plan = parsed query,

translated into relational algebra

 Equivalent to relational algebra

expression (why not calculus?)

using:

• cross product

• selection from set,
based on condition cond

• projection to attributes

• application of an expression
to arguments

• joins...

SELECT (op_1(R1,R2,…)),op_2(R1,R2,…), …)

FROM R1, R2, …

WHERE (R1,R2,…)

Parser – Checker - Views - Logical plan - Rewriter - Physical plan - Code gen. - Execution

R1 Rn

op_nop_1 ...

cond

...

8Advanced Databases – © P. Baumann

Logical Query Tree: Example
Parser – Checker - Views - Logical plan - Rewriter - Physical plan - Code gen. - Execution

SELECT Name

FROM Student, Course, Taking

WHERE Taking.ID = Student.ID

AND Taking.Num = Course.Num

AND Major = 'EE'

AND Dept = 'CS'

Student Taking

Taking.ID = Student.ID

Taking.Num = Course.Num

Major = 'EE' Dept = 'CS'

Course

Student.Name

Student

Taking

Course.Dept = 'CS'

Course

Student.Name

Taking.ID = Student.ID

Taking.Num = Course.Num

Student.Major = 'EE'

9Advanced Databases – © P. Baumann

 Optimization = find better, equivalent plan

• Equivalent = produces same result

• Logical level optimization = aka heuristic optimization

• Physical level optimization = aka cost-based optimization

 Two main issues:

• For a given query, how to find cheapest plans?

• How is cost of a plan estimated?

Query Optimization
Parser – Checker - Views - Logical plan – Optim1 - Physical plan – Optim2 - Execution

10Advanced Databases – © P. Baumann

Logical („Heuristic“) Optimization

 logical tree (more efficient) logical tree

• heuristically apply algebraic equivalences

• heuristics = "looks good, let's try it!"

 Ex: “push down predicates”

major='EE'(Taking.ID=Student.ID(Taking,Student)) Taking.ID=Student.ID(Taking, major='EE'(Student))

Parser – Checker - Views - Logical plan – Optim1 - Physical plan – Optim2 - Execution

Student.Major = 'EE'

Student Taking

 Taking.ID = Student.ID

Student.Major = 'EE'

Student Taking

 Taking.ID = Student.ID

11Advanced Databases – © P. Baumann

Heuristic Optimization: Another Example [src]

Why better?

http://mlwiki.org/index.php/Logical_Query_Plan_Optimization

12Advanced Databases – © P. Baumann

Physical Query Plan

 Typically, several algorithm variants for implementing query node = operator

 Physical plan created by concretizing particular algorithm per node

• Based on indexes, table sizing, predicate selectivity, ...

 Ex:

Parser – Checker - Views - Logical plan - Rewriter - Physical plan - Code gen. - Execution

SELECT Student.Name

FROM Student, Course, Taking

WHERE Taking.ID = Student.ID

AND Taking.Num = Course.Num

AND Major = 'EE'

AND Dept = 'CS' INDEX-SCAN(Course.Num)

INDEX-NESTED-LOOP-JOIN(Num)

SCAN(Student)

INDEX-SCAN (Taking.ID)

INDEX-NESTED-LOOP-JOIN(ID)

FILTER(major='EE')

PROJECT(Name)

one of many possible plans, assumes

particular index situation!

13Advanced Databases – © P. Baumann

Sample Physical Plan, Textual

SET EXPLAIN ON AVOID_EXECUTE;

SELECT C.customer_num, O.order_num

FROM customer C, orders O, items I

WHERE C.customer_num = O.customer_num

AND O.order_num = I.order_num

for each row in the customer table do:
read the row into C
for each row in the orders table do:

read the row into O
if O.customer_num = C.customer_num then

for each row in the items table do:
read the row into I
if I.order_num = O.order_num then

accept the row and send to user
end if

end for
end if

end for
end for

IBM Informix Dynamic Server

Parser – Checker - Views - Logical plan - Rewriter - Physical plan - Code gen. - Execution

In PostgreSQL:

EXPLAIN ANALYZE

14Advanced Databases – © P. Baumann

 Usually: physical plan leaf = table, index

 Access methods for single tables:

• Table scan: SCAN(table)

• Index scan: INDEX-SCAN(index)

• Condition-based index scan: INDEX-SCAN-P (index, predicate)
(note: obviously the predicate must be compatible with the index to be scanned)

 Join methods:

• NESTED-LOOP JOIN (various algorithms / improvements);

• SORT-MERGE JOIN

• HASH JOIN (various algorithms)

• In a parallel system: EXCHANGE

• In a distributed system: SHIP

Physical Plan Operators
Parser – Checker - Views - Logical plan - Rewriter - Physical plan - Code gen. - Execution

15Advanced Databases – © P. Baumann

Physical Plan Generation

 Even more possible physical query plans for a given logical plan

 physical plan generator tries to select "optimal" one

• sometimes called "physical plan enumerator"

• usually wrt response time or (in some cases) throughput

 How are intermediate results passed from children to parents?

• Temporary files

• Iterator interface (next)

Parser – Checker - Views - Logical plan - Rewriter - Physical plan - Code gen. - Execution

16Advanced Databases – © P. Baumann

Iterator Interface

 Every operator maintains its own execution state,

implements the following methods:

• open():

Initialize state

• getNext():

Return next tuple (or null pointer); read more data when needed

• close():

Clean up

 "ONC protocol"

Parser – Checker - Views - Logical plan - Rewriter - Physical plan - Code gen. - Execution

17Advanced Databases – © P. Baumann

Iterator for Table Scan

 open()

• Allocate buffer space

 getNext()

• If no block of R has been read yet: read first block from the disk;

return first tuple in the block (or null pointer if R is empty)

• If no more tuple left in current block: read next block of R from disk;

return first tuple in block (or null pointer if no more blocks in R)

• Return next tuple in block

 close()

• Deallocate buffer space

Parser – Checker - Views - Logical plan - Rewriter - Physical plan - Code gen. - Execution

18Advanced Databases – © P. Baumann

 open()

• R.open(); S.open();

• r = R.getNext();

 getNext()

• Repeat until r and s join:
s = S.getNext();
if (s = = null)
{ S.close(); S.open(); s = S.getNext();

if (s = = null) return null;
r = R.getNext();
if (r = = null) return null;

}

• return rs;

 close()

• R.close(); S.close();

Iterator for Nested-Loop Join
Parser – Checker - Views - Logical plan - Rewriter - Physical plan - Code gen. - Execution

for r in R:

for s in S:

if r joins s

then return rs

19Advanced Databases – © P. Baumann

Physical („Cost-Based“) Optimization

 Approach:

• enumerate all (?) possible physical plans that can be derived from given logical plan

• estimate cost for each plan

• pick best (i.e., least cost) alternative

 Ideally: Want to find best plan; practically: Avoid worst plans!

Parser – Checker - Views - Logical plan – Optim1 - Physical plan – Optim2 - Execution

20Advanced Databases – © P. Baumann

Physical („Cost-Based“) Optimization

 Estimate costs, based on physical situation

• concrete table sizes, indexes, data distribution, …

• Find cheapest plan

Parser – Checker - Views - Logical plan – Optim1 - Physical plan – Optim2 - Execution

INDEX-SCAN(Course.Num)

INDEX-NESTED-LOOP-JOIN(Num)

SCAN(Student)

INDEX-SCAN (Taking.ID)

INDEX-NESTED-LOOP-JOIN(ID)

FILTER(major='EE')

PROJECT(Name)

INDEX-SCAN(Course.Num)

INDEX-NESTED-LOOP-JOIN(Num)

SCAN(Student) SCAN (Taking.ID)

NESTED-LOOP-JOIN(ID)

FILTER(major='EE')

PROJECT(Name)

INDEX-SCAN(Course.Num)

INDEX-NESTED-LOOP-JOIN(Num)

FILTER-SCAN(Student.EE) SCAN (Taking.ID)

NESTED-LOOP-JOIN(ID)

PROJECT(Name)

21Advanced Databases – © P. Baumann

Summary: Logical vs Physical Query Plan

 Both are trees representing query evaluation

 Leaves of the tree represent data (table vs table/index)

 Internal nodes of the tree = "operators" over the data

 Logical vs physical plan:

Parser – Checker - Views - Logical plan - Rewriter - Physical plan - Code gen. - Execution

Level Operators

Logical plan higher-level, algebraic query language constructs

Physical plan lower-level, operational "access methods"

22Advanced Databases – © P. Baumann

Optional: Code Generator

 Translates physical query plan tree into executable code

• Possibly mixed hardware: CPU, GPU, FPGA, ...

 Often instead: compile into "database machine code" program

 Very system-specific

• may instead use a query plan interpreter (see next)

Parser – Checker - Views - Logical plan - Rewriter - Physical plan - Code gen. - Execution

23Advanced Databases – © P. Baumann

Finale: Execution of Tree

 Recursive evaluation of tree

• Requests go down

• Intermediate result tuples go up

 Often instead: compile into

"database machine code" program

• CPU, GPU, FPGA, ...

Parser – Checker - Views - Logical plan - Rewriter - Physical plan - Optim. - Execution

result = {};
root.open();
do
{

tmp = root.getNext();
result += tmp;

} while (tmp != NULL);
root.close();
return result;

root

24Advanced Databases – © P. Baumann

Summary

parser &

translator
query

relational

algebra

expression

execution

planoptimizer
evaluation

engine

query

output

data
data

statistics

„logical plan“ „physical plan“

