
1Advanced Databases – © P. Baumann

MapReduce

2Advanced Databases – © P. Baumann

Overview

 MapReduce: the concept

 Hadoop: the implementation

 Query Languages for Hadoop

 Spark: the improvement

 MapReduce vs databases

 Conclusion

3Advanced Databases – © P. Baumann

Map Reduce Patent

 Google granted US Patent 7,650,331, January 2010

 System and method for efficient large-scale data processing

A large-scale data processing system and method includes one or more

application-independent map modules configured to read input data and to

apply at least one application-specific map operation to the input data to

produce intermediate data values, wherein the map operation is

automatically parallelized across multiple processors in the parallel

processing environment. A plurality of intermediate data structures are

used to store the intermediate data values. One or more application-

independent reduce modules are configured to retrieve the intermediate

data values and to apply at least one application-specific reduce operation

to the intermediate data values to provide output data.

4Advanced Databases – © P. Baumann

MapReduce: the concept

Credits:

- David Maier

- Google

- Shiva Teja Reddi Gopidi

5Advanced Databases – © P. Baumann

Programming Model

 Goals: large data sets, processing distributed over 1,000s of nodes

• Abstraction to express simple computations

• Hide details of parallelization, data distribution, fault tolerance, load balancing

- MapReduce engine performs all housekeeping

 Inspired by primitives from functional PLs like Lisp, Scheme, Haskell

 Input, output are sets of key/value pairs

 Users implement interface of two functions:

map (inKey, inValue) -> (outKey, intermediateValuelist)

reduce(outKey, intermediateValuelist) -> outValuelist

aka „group by“ in SQL

aka aggregation in SQL

6Advanced Databases – © P. Baumann

Map/Reduce Interaction

 Map functions create a user-defined “index” from source data

 Reduce functions compute grouped aggregates based on index

 Flexible framework

• users can cast raw original data in any model that they need

• wide range of tasks can be expressed in this simple framework

7Advanced Databases – © P. Baumann

Ex 1: Count Word Occurrences

map(String inKey, String inValue):

// inKey: document name

// inValue: document contents

for each word w in inValue:

EmitIntermediate(w, "1");

reduce(String outputKey, Iterator auxValues):

// outKey: a word

// outValues: a list of counts

int result = 0;

for each v in auxValues:

result += ParseInt(v);

Emit(AsString(result));

[image: Google]

8Advanced Databases – © P. Baumann

Ex 2: Search

 Count of URL Access Frequency

• logs of web page requests map() <URL,1>

• all values for same URL reduce() <URL, total count>

 Inverted Index

• Document map() sequence of <word, document ID> pairs

• all pairs for a given word reduce() sorts document IDs <word, list(document ID)>

• set of all output pairs = simple inverted index

• easy to extend for word positions

9Advanced Databases – © P. Baumann

Hadoop: a MapReduce implementation
Credits:

- David Maier, U Wash

- Costin Raiciu

- “The Google File System” by S. Ghemawat, H. Gobioff, and S.-T. Leung, 2003

- https://hadoop.apache.org/docs/r1.0.4/hdfs_design.html

https://hadoop.apache.org/docs/r1.0.4/hdfs_design.html
https://hadoop.apache.org/docs/r1.0.4/hdfs_design.html
https://hadoop.apache.org/docs/r1.0.4/hdfs_design.html
https://hadoop.apache.org/docs/r1.0.4/hdfs_design.html
https://hadoop.apache.org/docs/r1.0.4/hdfs_design.html
https://hadoop.apache.org/docs/r1.0.4/hdfs_design.html
https://hadoop.apache.org/docs/r1.0.4/hdfs_design.html
https://hadoop.apache.org/docs/r1.0.4/hdfs_design.html

10Advanced Databases – © P. Baumann

Hadoop Distributed File System

 HDFS = scalable, fault-tolerant file system

• modeled after Google File System (GFS)

• 64 MB blocks („chunks“)

[“The Google File System” by S. Ghemawat, H. Gobioff, and S.-T. Leung, 2003]

H
ad

oo
p

11Advanced Databases – © P. Baumann

GFS

 Goals:

• Many inexpensive commodity components – failures happen routinely

• Optimized for small # of large files (ex: a few million of 100+ MB files)

 relies on local storage on each node

• parallel file systems: typically dedicated I/O servers (ex: IBM GPFS)

 metadata (file-chunk mapping, replica locations, ...) in master node„s RAM

• Operation log on master„s local disk, replicated to remotes master crash recovery!

• „Shadow masters“ for read-only access

HDFS differences?
• No random write; append only

• Implemented in Java, emphasizes platform independence

• terminology: namenode master, block chunk, ...

12Advanced Databases – © P. Baumann

Hadoop

 Apache Hadoop = open source MapReduce implementation

• significant impact in the commercial sector

 two core components:

• job management framework to handle map & reduce tasks

• Hadoop Distributed File System (HDFS)

13Advanced Databases – © P. Baumann

Hadoop Job Management Framework

 JobTracker = daemon service for submitting & tracking MapReduce jobs

 TaskTracker = slave node daemon in the cluster accepting tasks

(Map, Reduce, & Shuffle operations) from a JobTracker

 Pro: replication & automated restart of failed tasks

 highly reliable & available

 Con: 1 Job Tracker per Hadoop cluster, 1 Task Tracker per slave node

 single point of failure

14Advanced Databases – © P. Baumann

Replica Placement

 Goals of placement policy

• scalability, reliability and availability, maximize network bandwidth utilization

 Background: GFS clusters are highly distributed

• 100s of chunkservers across many racks

• accessed from 100s of clients from same or different racks

• traffic between machines on different racks may cross many switches

• bandwidth between racks typically lower than within rack

15Advanced Databases – © P. Baumann

MapReduce Pros/Cons

 Pros:

 Simple and easy to use

 Fault tolerance

 Flexible

 Independent from storage

 Cons:

 no high level language

 No schema, no index

 single fixed dataflow

 Low efficiency

16Advanced Databases – © P. Baumann

“top 5 visited pages by users aged 18-25”

In MapReduce

[http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt]

17Advanced Databases – © P. Baumann

Query Languages for MapReduce

Credits:

- Matei Zaharia

18Advanced Databases – © P. Baumann

Adding Query Interfaces to Hadoop

 Pig Latin

• Data model: nested “bags” of items

• Ops: relational (JOIN, GROUP BY, etc) + Java custom code

 Hive

• Data model: RDBMS tables

• Ops: SQL-like query language

19Advanced Databases – © P. Baumann

Example Problem

 user data in one file

 website data in another

 find top 5 most visited pages

 by users aged 18-25

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

[http://wiki.apache.org/pig-data/attachments/PigTalksPapers/attachments/ApacheConEurope09.ppt]

20Advanced Databases – © P. Baumann

In SQL

SELECT INTO Temp

UV.sourceIP,

AVG(R.pageRank) AS avgPageRank,

SUM(UV.adRevenue) AS totalRevenue

FROM Rankings AS R, UserVisits AS UV

WHERE R.pageURL = UV.destURL

AND UV.visitDate BETWEEN

DATE(‘2000-01-15’) AND

DATE(‘2000-01-22’)

GROUP BY UV.sourceIP

SELECT sourceIP,

avgPageRank,

totalRevenue

FROM Temp

ORDER BY totalRevenue

DESC LIMIT 1

21Advanced Databases – © P. Baumann

Users = load ‘users’ as (name, age);
Filtered = filter Users by

age >= 18 and age <= 25;
Pages = load ‘pages’ as (user, url);
Joined = join Filtered by name, Pages by user;
Grouped = group Joined by url;
Summed = foreach Grouped generate group,

count(Joined) as clicks;
Sorted = order Summed by clicks desc;
Top5 = limit Sorted 5;

store Top5 into ‘top5sites’;

Pig Latin

22Advanced Databases – © P. Baumann

Translation to MapReduce

Quite natural translation of job components into Pig Latin:

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Users = load …
Filtered = filter …
Pages = load …
Joined = join …
Grouped = group …
Summed = … count()…
Sorted = order …
Top5 = limit …

23Advanced Databases – © P. Baumann

Job 1

Job 2

Job 3

Translation to MapReduce

Quite natural translation of job components into Pig Latin:

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Users = load …
Filtered = filter …
Pages = load …
Joined = join …
Grouped = group …
Summed = … count()…
Sorted = order …
Top5 = limit …

24Advanced Databases – © P. Baumann

Hive

 Relational database built on Hadoop

• table schemas, SQL-like query language

• can call Hadoop Streaming scripts

 Common relational features:

• table partitioning,complex data types, sampling

• some query optimization

 Developed at Facebook, now Apache

• Today: „data warehouse infrastructure“

SELECT word, count(1) AS count

FROM (SELECT explode(split(line, '\s')) AS word

FROM docs) temp

GROUP BY word

ORDER BY word

25Advanced Databases – © P. Baumann

MapReduce vs (Relational) Databases

Credits: David Maier

26Advanced Databases – © P. Baumann

SQL in MapReduce?

 Projection, filtering: easy

 Join, grouping, sorting?

27Advanced Databases – © P. Baumann

Grep Task: Load Times

[“A Comparison of Approaches to Large-Scale Data Analysis” by A. Pavlo et al., 2004]

28Advanced Databases – © P. Baumann

Grep Task: Execution Times

[“A Comparison of Approaches to Large-Scale Data Analysis” by A. Pavlo et al., 2004]

29Advanced Databases – © P. Baumann

Tasks Comparison: Starting Point

 Data set

• 600K unique HTML documents

• 155M user visit records (20 GB/node)

• 18M ranking records (1 GB/node)

CREATE TABLE Documents (

url VARCHAR(100)

PRIMARY KEY,

contents TEXT);

CREATE TABLE UserVisits (

sourceIP VARCHAR(16),

destURL VARCHAR(100),

visitDate DATE,

adRevenue FLOAT,

userAgent VARCHAR(64),

countryCode VARCHAR(3),

languageCode

VARCHAR(3),

searchWord VARCHAR(32),

duration INT);

CREATE TABLE Rankings (

pageURL VARCHAR(100)

PRIMARY KEY,

pageRank INT,

avgDuration INT);

[“A Comparison of Approaches to Large-Scale Data Analysis” by A. Pavlo et al., 2004]

30Advanced Databases – © P. Baumann

Select Task

 SQL Query:

 Relational DBMS

• use index on pageRank column

• Relative performance degrades

as number of nodes increases

 Hadoop start-up cost increase

with cluster size

SELECT pageURL, pageRank

FROM Rankings

WHERE pageRank > X

[“A Comparison of Approaches to Large-Scale Data Analysis” by A. Pavlo et al., 2004]

31Advanced Databases – © P. Baumann

Aggregation Task

“total ad revenue for each source IP, based on user visits table”

SELECT sourceIP,

SUM(adRevenue)

FROM UserVisits

GROUP BY sourceIP

SELECT SUBSTR(sourceIP, 1, 7),

SUM(adRevenue)

FROM UserVisits

GROUP BY SUBSTR(sourceIP, 1, 7)

[“A Comparison of Approaches to Large-Scale Data Analysis” by A. Pavlo et al., 2004]

Variant 1: 2.5M groups Variant 2: 2,000 groups

32Advanced Databases – © P. Baumann

Join Task

SQL Query:

[“A Comparison of Approaches to Large-Scale Data Analysis” by A. Pavlo et al., 2004]

SELECT INTO Temp

UV.sourceIP,

AVG(R.pageRank) AS avgPageRank,

SUM(UV.adRevenue) AS totalRevenue

FROM Rankings AS R, UserVisits AS UV

WHERE R.pageURL = UV.destURL

AND UV.visitDate BETWEEN

DATE(‘2000-01-15’) AND

DATE(‘2000-01-22’)

GROUP BY UV.sourceIP

SELECT sourceIP,

avgPageRank,

totalRevenue

FROM Temp

ORDER BY totalRevenue

DESC LIMIT 1

33Advanced Databases – © P. Baumann

MapReduce vs (Relational) Databases: Join

SQL Query: MapReduce program:

• filter records outside date range, join with

rankings file

• compute total ad revenue and average

page rank based on source IP

• produce largest total ad revenue record

 Phases in strict sequential order

[A. Pavlo et al., 2004: A Comparison of Approaches to Large-Scale Data Analysis]

SELECT INTO Temp

UV.sourceIP,

AVG(R.pageRank) AS avgPageRank,

SUM(UV.adRevenue) AS totalRevenue

FROM Rankings AS R, UserVisits AS UV

WHERE R.pageURL = UV.destURL

AND UV.visitDate BETWEEN

DATE(‘2000-01-15’) AND

DATE(‘2000-01-22’)

GROUP BY UV.sourceIP

SELECT sourceIP,

avgPageRank,

totalRevenue

FROM Temp

ORDER BY totalRevenue

DESC LIMIT 1

34Advanced Databases – © P. Baumann

Summary: MapReduce vs Parallel (R)DBMS

 MapReduce: No schema, no index, no high-level language

• faster loading vs. faster execution

• easier prototyping vs. easier maintenance

 Fault tolerance

• restart of single worker vs. restart of transaction

 Installation & tool support

• easy for MapReduce vs. challenging for parallel DBMS

• No tools for MapReduce vs. lots of tools, including automatic performance tuning

 Performance per node

• parallel DBMS ~same performance as map/reduce

in smaller clusters

In a nutshell:

- (R)DBMSs: efficiency, QoS

- MapReduce: cluster scalability

35Advanced Databases – © P. Baumann

Spark

Credits:

- Matei Zaharia

36Advanced Databases – © P. Baumann

Motivation

 MapReduce aiming at “big data” analysis on large, unreliable clusters

• After initial hype, shortcomings perceived:

ease of use (programming!), efficiency, tool integration, ...

 …as soon as organizations started using it widely, users wanted more:

• More complex, multi-stage applications

• More interactive queries

• More low-latency online processing

S
ta

ge
 1

S
ta

ge
 2

S
ta

ge
 3

Iterative job

Query 1

Query 2

Query 3

Interactive mining

Jo
b

1

Jo
b

2

…

Stream processing

37Advanced Databases – © P. Baumann

Avoiding Disks

 Problem: in MR, only way to communicate data is disk slow!

 Goal: In-Memory Data Sharing

• 10-100× faster than network and disk

iter. 1 iter. 2 . . .

Input

HDFS

read

HDFS

write

HDFS

read

HDFS

write

iter. 1 iter. 2 . . .

Input

38Advanced Databases – © P. Baumann

Resilient Distributed Datasets (RDDs)

 Partitioned collections of records

that can be stored in memory across the cluster

 Manipulated through a diverse set of transformations

• map, filter, join, etc

 Fault recovery without costly replication

• Remember series of transformations that built RDD (its lineage)

• Can recompute lost data based on input files

39Advanced Databases – © P. Baumann

Example: Log Mining

 Load error messages from a log into memory, then interactively search for

various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(_.startsWith(“ERROR”))

messages = errors.map(_.split(„\t‟)(2))

messages.cache()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

messages.filter(_.contains(“foo”)).count

messages.filter(_.contains(“bar”)).count

. . .

tasks

results

Cache 1

Cache 2

Cache 3

Base RDDTransformed RDD

1 TB data in 5-7 sec (vs 170 sec on disk)

Scala programming language

40Advanced Databases – © P. Baumann

Spark vs Hadoop

 Spark = cluster-computing framework by Berkeley AMPLab

• Now Apache

 Inherits HDFS, MapReduce from Hadoop

 But:

• Disk-based comm in-memory comm

• Java Scala

41Advanced Databases – © P. Baumann

Hadoop vs Spark: Logistic Regression

 “Find best line separating two sets of points”

 29 GB dataset

 20x EC2 m1.xlarge 4-core machines

 Result:

0

1000

2000

3000

4000

5000

1 5 10 20 30

R
u

n
n

in
g

 T
im

e
 (
s)

#Iterations

Hadoop

Spark

127 s / iteration

first iteration 174 s

further iterations 6 s

target

random initial line

42Advanced Databases – © P. Baumann

Conclusion

43Advanced Databases – © P. Baumann

Conclusion

 MapReduce = specialized distributed processing paradigm

• Optimized for horizontal scaling in commodity clusters (!), fault tolerance

• Well suited for set-oriented tasks, less so for highly connected data (graphs, arrays, ...)

• Need to rewrite algorithms

 Apache Hadoop = MapReduce implementation

• HDFS, Java

 Apache Spark = improved MapReduce implementation

• HDFS, RDD for in-memory, Scala

 Query languages on top of MapReduce

• HL QLs: Pig, Hive, JAQL, ASSET, …

