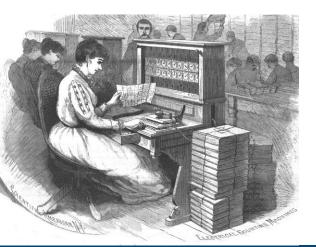
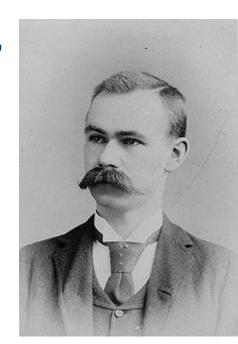


CO-560-A Databases [and Web Services]

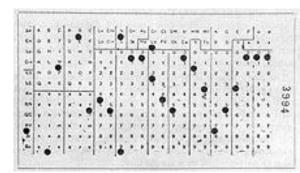
Instructor: Peter Baumann

email: pbaumann@constructor.university


office: room 88, Research 1


Where It All Started

Source: Wikipedia


- 1890 census on 62,947,714 US population ← "Big Data"
 - was announced after only six weeks of processing
- Hollerith "tabulating machine and sorter"
- Tabulating Machine Company
 - → International Business Machines Corporation

Hollerith card puncher, used by the United States Census Bureau

Herman Hollerith in 1888

Hollerith punched card

What Happens in an Internet Minute?

What Is "Big Data"?

- Internet: the unprecedented information collector
 - 2012: 200m Web servers [Yahoo]
 - estd 50+b static pages [Yahoo]
 - 40 b photos [Facebook]
 - 2012: 31b searches/m [Google]
- 2025: 463 Exabytes / day

- Typical Big Data:
 - Business Intelligence
 - Social networks Facebook, Twitter, GPS, ...
 - Life Science: patient data, imagery
 - Geo: Satellite imagery, weather data, crowdsourcing, ...

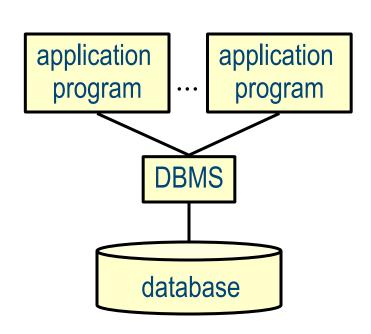
Data = the "new gold", "new oil"
Petrol industry: "more bytes than barrels"

2012

"Data Deluge"

- It is estimated that a week's work at the New York Times contains more information than a person in the 18th Century would encounter in their entire lifetime and the thought is that within 10 years the rate of information doubling will occur every 72 hours." -- P. "Bud" Peterson, U Colorado
- "monthly average per smartphone to exceed 20GB at the end of 2023.
 Global traffic 329 EB per month in 2028" Ericsson, 2022
- typical car: ~100 million LoC[source]

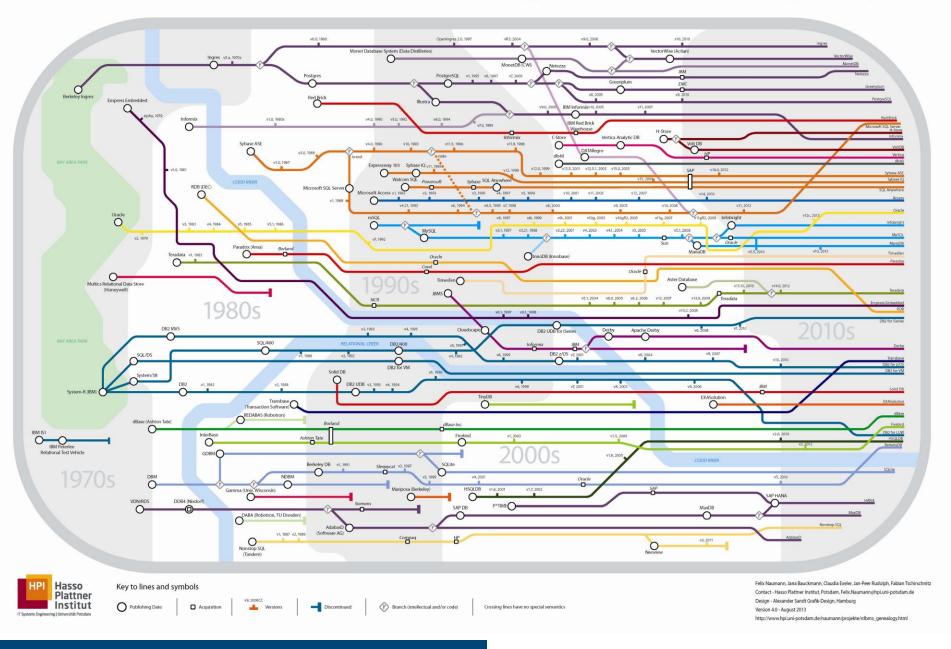
Data Management: The Task


- Manifold information, accessed by users in manifold (often unanticipated) ways
 - Standard task
 - Many variations
- Solution: individually configurable standard tool

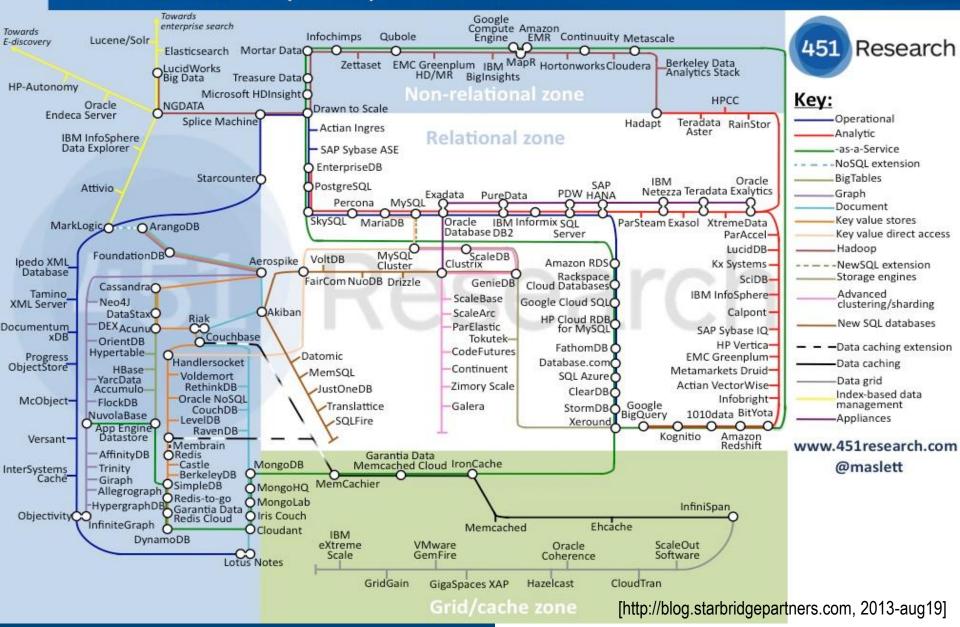
...is this marketing speak???

What Is a Database [System]?

- Database = DB = an integrated collection of data
 - With a well-described structure = schema
- Database [Management] System = DBMS
 - = software to store and manage databases
 - ...and no one else!
- describes excerpt of real-world enterprise
 - "Universe of Discourse" (UoD), "mini world"
- Example:
 - Entities (students, courses, ...)
 - Relationships (Madonna is taking 320301, ...)


DBMS History

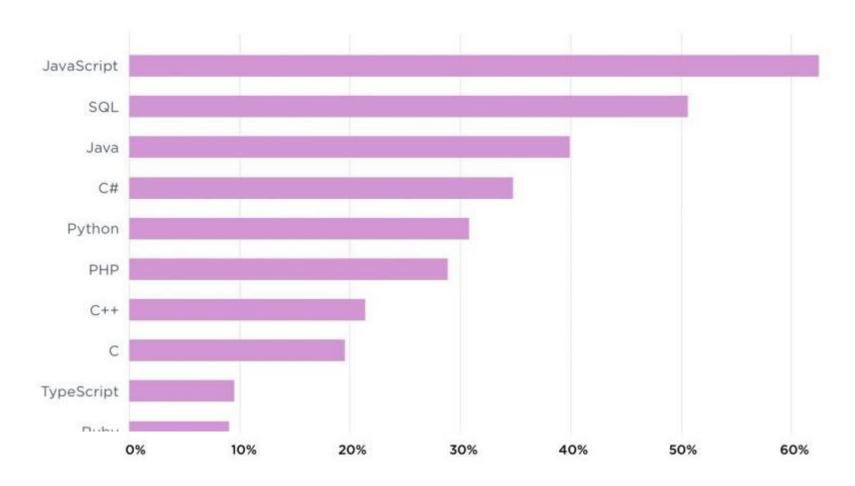
- 60s... IMS (hierachical model, for tapes), CODASYL (network model, still tapes)
- 1974 SEQUEL defined (Chamberlain et al.)
- 1977 IBM prototype System R; Oracle starts implementation
- 1979 first Oracle SQL DBMS shipped
- 1981 IBM ships SQL/DS
- 1983 IBM introduces DB2
- 1985 Ingres, Informix switch to SQL
- 1987 ISO 9075 Database Language SQL
- 1988 dBASE IV with SQL
- 1989 ISO SQL-89
- 1992 ISO SQL-92
- 1999 SQL:1999 (SQL3): extensibility
- 2003 SQL:2003


Key to success: query language

- Intuitive (hm...)
- Yet precise, formalised semantics
- Declarative = abstracts from internals
- ...hence optimizable

Genealogy of Relational Database Management Systems

Database Landscape Map - December 2012


...and Then Came NoSQL

www.nosql-database.org

- original intention: modern web-scale databases
 - began early 2009, has grown rapidly
 - Broadened into "Next-Generation Databases"
- Fast: On >50 GB data:
 - MySQL: Writes 300 ms avg
 - Cassandra: Writes 0.12 ms avg
- The Empire strikes back: NewSQL

...but still:

Jelvix

Source: Stack Overflow, Amazon, Statista

je

OUR RESEARCH

Our Research: Array Databases

- Large-Scale Scientific Information Services (L-SIS) Research Group
 - flexible, scalable services on massive n-D arrays
- Main visible results:
 - <u>rasdaman</u> Array DBMS
 - <u>EarthServer</u> global Earth datacube federation
 - Datacube standards in <u>OGC</u>, ISO, INSPIRE most of all: <u>SQL/MDA</u>
- Got rock-solid coding skills? C++, Java, JavaScript? Join us!

BIG EARTH DATA The Digitized Planet

LOGISTICS

Prerequisites

- Interest, Curiosity, Engagement
- General CS I+II, programming, basic algebra
 - data structures (trees!), object-oriented concepts
 - general programming experience
 - Linux, shell (project!)
- Non-CS majors: contact me!
 - more difficult due to missing prerequisites
 - This is an advanced CS course!
- "reading without writing is daydreaming"
- On any difficulties, contact TAs/me

Resources

- Course material: https://peter-baumann.org → teaching → DBWS
- Instructor: <u>pbaumann@constructor.university</u>
- Teaching Assistants (questions, tutorials, ...):
 - Milisavljevic, Matilda <mmilisavljevic@constructor.university>
 - Hasanaj, Erjon <ehasanaj@constructor.university>
 - Nguyen, Thanh < thanguyen@constructor.university>
 - Bancila, Andrei <abancila@constructor.university>
 - Panicker, Aryan <apanicker@constructor.university>
- DB forum of Teams course & project
- CLAMV: clabsql see project session
- Textbooks: next slide

Literature

- H. Garcia-Molina, J.D. Ullman, J.D. Widom: Database Systems: The Complete Book. 2nd edition, Pearson,
 2008
 - Fundament providing all the basics
- M. Stonebraker, J.M. Hellerstein, J. Hamilton: Readings in Database Systems, 5th edition, Morgan Kaufmann Publishers, 2018
 - Interesting facets and views
- Elvis C. Foster, Shripad V. Godbole: Database Systems. O'Reilly, 2014
 - Inspection of concrete DBMSs
- P. Trivett: Python Programming and SQL. ISBN-13: 979-8868124884
 - M. Grinberg: Flask Web Development: Developing Web Applications with Python. O'Reilly, 2018
 - Two alternatives providing important how-to for the project
- the Web manifold tutorials, find your favourite

Course Plot – or: why should I take it?

- How to design databases, and how to search them
- How to design (Internet) services

What industry expects a CS graduate to know

- Database services revisited
- Practice: set up a Web service

Your entry point to the DB [dev/admin] world

Course Plot, Refined

- Database design
 - Entity-Relationship Model; UML
- Relational model
 - Relations; SQL intro;
 ER mapping; views
 - SQL: queries, constraints, triggers
- Database application development

- Internet service architectures
 - AJAX
 - HTML, CSS, JSON, ...
- Databases revisited
 - Logical/Physical Design, Transaction Management, Security, Authorization
- NoSQL
- Big Data

CAREER RELEVANCE

Job Opportunities with DB Knowledge

- DBMS implementor (with DBMS vendor)
- DB administrator (DBA)
- Database consultants
- Software developer
 - ...without basic DB knowledge? No way!

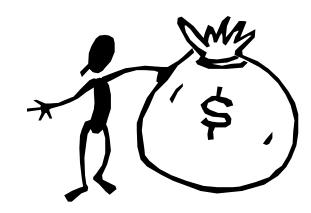
Salaries in Germany 2024?

Database administrator

Database developer

Backend programmer

Skills Expected



Summary: Why Learn Databases?

- Fun & challenge
 - DBMS unique mix of most of CS:
 OS, programming languages, complexity theory, AI, logic, statistics, hardware, ...
- Money
 - Computer experts with database knowledge hold responsible jobs...and are well-paid!

