
1Databases & Web Services – © P. Baumann

The Relational Model

Ramakrishnan & Gehrke, Chapter 3

2Databases & Web Services – © P. Baumann

 Technically: Relation made up of 2 parts:

• Schema: specifies name of relation, plus name and type of each column

• Ex: Students(sid: string, name: string, login: string, gpa: real)

• Instance: a table, with rows and columns

• # rows = cardinality, # fields = degree / arity

Relational Database: Definitions

Students sid name login gpa

changes all

the time

does not

change often

attributetuple

 Mathematically:

• Let A1, …, An (n>0) be value sets, called attribute domains

• relation R A1 … An = { (a1,…,an) | a1 A1, …, an An }

 Can think of a relation as a set of rows or tuples

• NO!!! Duplicates allowed multi-set

• atomic attribute types only – no fancies like sets, trees, …

 Relational database: a set of relations

3Databases & Web Services – © P. Baumann

Example Instance of Students Relation

 Cardinality = 3, degree = 4, all rows distinct

 Do all columns in a relation instance have to be distinct?

Sid Name Login Gpa

53666 Jones jones@cs 3.4

53688 Smith smith@eecs 3.2

53650 Smith smith@math 3.8

4Databases & Web Services – © P. Baumann

 A major strength of the relational model: simple, powerful querying of data

• Data organised in tables, query results are tables as well

• Small set of generic operations, work on any table structure

 Query describes structure of result ("what"),
not algorithm how this result is achieved ("how")

• data independence, optimizability

 Queries can be written intuitively,

and the DBMS is responsible for efficient evaluation

• The key: precise (mathematical) semantics for relational queries

• Allows the optimizer to extensively re-order operations,
and still ensure that the answer does not change

Querying Relational Databases

5Databases & Web Services – © P. Baumann

SQL, Structured English Query Language

 “all students with

GPA less than 3.6"

sid name login gpa

53666 Jones jones@cs 3.4

53688 Smith smith@eecs 3.2

53650 Smith smith@math 3.8

sid name login gpa

53666 Jones jones@cs 3.4

53688 Smith smith@eecs 3.2

name login

Jones jones@cs

Smith smith@eecs

 “…names and logins…”:

SELECT *
FROM Students S
WHERE S.gpa < 3.6

SELECT S.name, S.login
…

6Databases & Web Services – © P. Baumann

SQL Joins: Querying Multiple Relations

 What does the following query compute?

• SELECT S.name, E.cid

FROM Students S, Enrolled E

WHERE S.sid=E.sid AND E.grade=“A”

sid name login gpa

53666 Jones jones@cs 3.4

53688 Smith smith@eecs 3.2

53650 Smith smith@math 3.8

sid cid grade

53831 Carnatic101 C

53831 Reggae203 B

53666 Topology112 A

53688 History105 B

S.name E.cid

Jones Topology112

 Given the following instances of Students and Enrolled:

 we get:

7Databases & Web Services – © P. Baumann

DML: Adding and Deleting Tuples

 DML = Data Manipulation Language = SELECT + …

 insert a single tuple:

 delete all tuples satisfying some condition:

 change all tuples satisfying some condition:

INSERT INTO Students(sid, name, login, gpa)
VALUES (53688, „Smith‟, „smith@ee‟, 3.2)

DELETE FROM Students S
WHERE S.name = „Smith‟

UPDATE Students S
SET gpa = 3.0
WHERE S.name = „Smith‟

SQL = DML DDL

8Databases & Web Services – © P. Baumann

DDL: Maintaining the Schema

 DDL = Data Definition Language

• Create / delete / change relation definitions; inspect schema

• type (domain) of each attribute is specified, enforced by DBMS

• Standard attribute types: integer, float(p), char(n), varchar(n), long

 Example 1: Create Students relation

 Example 2: Enrolled table for students' courses

CREATE TABLE Students(

sid: char(20), name: char(20), login: char(10), gpa: float(2)

)

CREATE TABLE Enrolled(

sid: char(20), cid: char(20), grade: char(2)

) SQL = DML DDL

9Databases & Web Services – © P. Baumann

Integrity Constraints

 Integrity constraint = IC

= condition that must be true for any instance of the database

• e.g., domain constraints

• ICs are specified when schema is defined

• ICs are checked when relations are modified

 A legal instance of a relation is one that satisfies all specified ICs

• DBMS should not allow illegal instances

 If the DBMS checks ICs, stored data is more faithful to real-world meaning

• Avoids data entry errors, too!

10Databases & Web Services – © P. Baumann

Primary Key Constraints

 A set of fields is a key for a relation if :

• 1. No two distinct tuples can have same values in all key fields, and

• 2. This is not true for any subset of the key.

 Part 2 false superkey

• If >1 key for relation,

one of the keys is chosen (by DBA) to be primary key

 Example:

• sid key for Students (what about name?)

• The set {sid, gpa} is a superkey

11Databases & Web Services – © P. Baumann

Primary and Candidate Keys in SQL

 Possibly many candidate keys (specified using UNIQUE),
one of which is chosen as the primary key

CREATE TABLE Enrolled

(sid CHAR(20)

cid CHAR(20),

grade CHAR(2),

PRIMARY KEY (sid,cid))

 “For a given student and course, there is
a single grade”
vs.
“Students can take only one course, and
receive a single grade for that course;
further, no two students in a course
receive the same grade.”

• Used carelessly, an IC can prevent the
storage of database instances that arise in
practice!

CREATE TABLE Enrolled

(sid CHAR(20)

cid CHAR(20),

grade CHAR(2),

PRIMARY KEY (sid),

UNIQUE (cid, grade))

12Databases & Web Services – © P. Baumann

Foreign Keys, Referential Integrity

 Foreign key = set of fields in one relation that is used to `refer‟ to a tuple
in another relation

• Must correspond to primary key of the second relation, like a `logical pointer‟

 Example: sid is a foreign key referring to Students:

• Enrolled(sid: string, cid: string, grade: string)

• If all foreign key constraints are enforced, referential integrity is achieved, i.e., no
dangling references.

 data model w/o referential integrity?

13Databases & Web Services – © P. Baumann

Enrolled

sid cid grade

53831 Carnatic101 C

53831 Reggae203 B

53666 Topology112 A

53688 History105 B

Foreign Keys in SQL

 Only students listed in the Students relation should be allowed to enroll
for courses

CREATE TABLE Enrolled

(sid CHAR(20), cid CHAR(20), grade CHAR(2),

PRIMARY KEY (sid,cid),

FOREIGN KEY (sid) REFERENCES Students)

Students

sid name login gpa

53666 Jones jones@cs 3.4

53688 Smith smith@eecs 3.2

53650 Smith smith@math 3.8

Problem?

Problem?

14Databases & Web Services – © P. Baumann

Enforcing Referential Integrity

 Students and Enrolled:
Enrolled. sid = foreign key referencing Students

 What if Enrolled tuple with non-existent student id is inserted?

• Reject it

 What should be done if a Students tuple is deleted?

• Also delete all Enrolled tuples that refer to it

• Disallow deletion of a Students tuple that is referred to

• Set Enrolled.sid tuples that refer to it to a default sid

• Set Enrolled.sid tuples that refer to it to a special value NULL, aka `unknown’ or `inapplicable’

 Similar if primary key of Students tuple is updated

• Never ever do that, anyway!

15Databases & Web Services – © P. Baumann

Referential Integrity in SQL

 SQL/92 and SQL:1999 support all 4

options on deletes and updates:

• Default is NO ACTION

(delete/update is rejected)

• CASCADE

(also delete all tuples that refer to

deleted tuple)

• SET NULL

SET DEFAULT

(sets foreign key value of referencing

tuple)

CREATE TABLE Enrolled

(sid CHAR(20),

cid CHAR(20),

grade CHAR(2),

PRIMARY KEY (sid,cid),

FOREIGN KEY (sid)

REFERENCES Students

ON DELETE CASCADE

ON UPDATE SET DEFAULT)

treat corresponding Enrolled tuple

when Students (!) tuple is deleted

16Databases & Web Services – © P. Baumann

Where do ICs Come From?

 based upon the semantics of the real-world enterprise

that is being described in the database relations

 can check a database instance to see if an IC is violated,

but can NEVER infer that an IC is true by looking at an instance

• An IC is a statement about all possible instances!

• From example, we know name is not a key, but the assertion that sid is a key is given

to us

 Key and foreign key ICs are the most common;

more general ICs supported too

17Databases & Web Services – © P. Baumann

Logical DB Design: ER to Relational

 Entity sets to tables:

• ER attribute table attribute

(can do that because ER constrained

to simple types, same as in relational model)

• Declare key attribute “Primary key” CREATE TABLE Employees

(ssn CHAR(11),

name CHAR(20),

lot INTEGER,

PRIMARY KEY (ssn))

Employees

ssn
name

lot

CREATE TABLE Employees

(sid INTEGER,

ssn CHAR(11) UNIQUE,

…,

PRIMARY KEY (sid))

 Best practice (not followed by some books):

Add “abstract” identifying key attribute

• No further semantics

• System generated, no change, no reuse

• use only this as primary key & for referencing

18Databases & Web Services – © P. Baumann

Relationship Sets to Tables

 In translating a relationship set to a

relation, attributes of the relation must

include:

• Keys for each participating entity set

(as foreign keys)

• a superkey for the relation

• All descriptive attributes

CREATE TABLE Works_In

(ssn CHAR(11),

did INTEGER,

since DATE,

PRIMARY KEY (ssn, did),

FOREIGN KEY (ssn)

REFERENCES Employees,

FOREIGN KEY (did)

REFERENCES Departments)

19Databases & Web Services – © P. Baumann

Review: Key Constraints

 Each dept has at most one

manager, according to the

key constraint on Manages

Translation to

relational model?

…see next!

Many-to-Many1-to-1 1-to-Many Many-to-1

dname

budgetdid

since

lot

name

ssn

ManagesEmployees Departments

20Databases & Web Services – © P. Baumann

ER Diagrams with Key Constraints

 Map relationship to table:

• did key now

• Separate tables for

Employees and

Departments

CREATE TABLE Manages
(ssn CHAR(11),

did INTEGER,

since DATE,

PRIMARY KEY (did),

FOREIGN KEY (ssn) REFERENCES Employees,

FOREIGN KEY (did) REFERENCES Departments)

CREATE TABLE Dept_Mgr
(did INTEGER,

dname CHAR(20),

budget REAL,

ssn CHAR(11),

since DATE,

PRIMARY KEY (did),

FOREIGN KEY (ssn) REFERENCES Employees)

 We know each department

has unique manager

can combine

Manages and Departments

21Databases & Web Services – © P. Baumann

Participation Constraints in SQL

 Review: Participation Constraints

• Does every department have a manager?

participation constraint

• Every did value in Departments table

must appear in a row of the Manages table

(with non-null ssn value!)
CREATE TABLE Manages
(did INTEGER,

dname CHAR(20),

budget REAL,

ssn CHAR(11) NOT NULL,

since DATE,

PRIMARY KEY (did),

FOREIGN KEY (ssn)

REFERENCES Employees

ON DELETE NO ACTION)

Manages

Works_In

DepartmentsEmployees

 can capture participation constraints

involving one entity set in a binary relationship

• but little else (w/o CHECK constraints)

 caution about hacks!

22Databases & Web Services – © P. Baumann

Translating Weak Entity Sets

 Weak entity set & identifying relationship set

single table

 When owner entity is deleted:

delete all owned weak entities

CREATE TABLE Dep_Policy
(pname CHAR(20),

age INTEGER,

cost REAL,

ssn CHAR(11) NOT NULL,

PRIMARY KEY (pname, ssn),

FOREIGN KEY (ssn)

REFERENCES Employees

ON DELETE CASCADE)

 Review: weak entity:
identifiable uniquely only by owner entity

• one-to-many relationship set

(1 owner, many weak entities)

• Weak entity:

total participation in identifying relationship set

23Databases & Web Services – © P. Baumann

Create table Works_in(

eid: int unique,

did_ int,

since: date

primary key(eid,did_)

foreign key (eid) references Employees

foreign key (did_) references Departments

)

Create table Employees(

eid: int,

ssn: int unique,

name: char(100),

lot: int

primary key (eid)

)

Example
dname

budgetdid

since

lot

name

ssn

Works_inEmployees Departments

1:n 1:1

Create table Departments(

did_: int,

did: int unique,

dname: char(100),

budget: money

primary key (did_)

)

24Databases & Web Services – © P. Baumann

Example
dname

budgetdid

since

lot

name

ssn

Works_inEmployees Departments

1:n 1:1

eid ssn name lot

--

1 123 John Doe 5

2 456 Jane Fox 17

3 789 Charlie Brown 42

did_ did name budget

--

1 5 Sales 500

2 17 Accounting 170

3 99 Production 420

eid did_ since

1 2 2018-12-01

3 1 2017-01-01

2 2 2015-06-01

Create table Works_in(

eid: int unique,

did_ int,

since: date

primary key(eid,did_)

foreign key (eid) references Employees

foreign key (did_) references Departments

)

Create table Employees(

eid: int,

ssn: int unique,

name: char(100),

lot: int

primary key (eid)

)

Create table Departments(

did_: int,

did: int unique,

dname: char(100),

budget: money

primary key (did_)

)

25Databases & Web Services – © P. Baumann

 Create table Employees(

eid: int,

ssn: int unique,

name: char(100),

lot: int,

since: date

did_: int

primary key (eid)

foreign key (did_)

references Departments

)

Example / Optimized
dname

budgetdid

since

lot

name

ssn

Works_inEmployees Departments

1:n 1:1

 Create table Departments(

did_: int,

did: int unique,

dname: char(100),

budget: money

primary key (did_)

)

26Databases & Web Services – © P. Baumann

 H ISA E: every H entity is also a E entity

(“H inherits from E")

• H attributes = E attributes + plus maybe more

• H subclass, E superclass

 Mapping to Relations

• Several choices

• Constraints determine

ISA Hierarchies

Contract_Emps

hourly_wages
ISA

Hourly_Emps

contractid
hours_worked

name
ssn

Employees

lot

27Databases & Web Services – © P. Baumann

ISA Tables

 Alt 1:

 Alt 2:

 Alt 3:

AB id a b

1 . .

3 . .

XY id x y

1 . .

2 . .

3

4

CD id c d

2 . .

4 . .

ISA

x

XY

y

c

CD

db

AB

a

id

ABXY id a b x y

1

3

CDXY id c d x y

2

4

ABCDXY id a b c d x y

1 5 7 n n 3 4

2 n n 9 8 6 7

Insert?

Select AB?

Select XY?

28Databases & Web Services – © P. Baumann

 Alt 1: separate relation per entity set

3 relations: Employees, Hourly_Emps, Contract_Emps

• Every employee recorded in Employees

• must delete Hourly_Emps tuple if referenced Employees tuple is deleted

• Queries on all Employees easy, on Hourly_Emps require join

 Alt 2: relations only for subclass entity sets

2 relations: Hourly_Emps, Contract_Emps

• Hourly_Emps: ssn, name, lot, hourly_wages, hours_worked

• Each employee must be in one of these two subclasses

• Alt 3: one big relation 1 relation: Emps

• Alt 4: PostgreSQL inheritance:

ISA Relations: Discussion

Overlap?

Covering?

CREATE TABLE Contract_Emps (contractid: int) INHERITS (Employees)
Not a solution in exam!

https://www.postgresql.org/docs/current/ddl-inherit.html

29Databases & Web Services – © P. Baumann

ISA Relations: Schemas

 Alt 1: separate relation per entity set

 Alt 2: relations only for subclass entity sets

 Alt 3: one big relation

XY (id, x, y)

AB (id, a, b, FOREIGN KEY (id) REFERENCES XY(id))

CD (id, c, d, FOREIGN KEY (id) REFERENCES XY(id))

XYAB (id, x, y, a, b)

XYCD (id, x, y, c, d)

XYABCD (id, x, y, a, b c, d)

30Databases & Web Services – © P. Baumann

Views

 like a table, but stores query rather than data

 Definition:

 Use like any table:

 Security: hiding details of underlying relation(s)

• Given YoungActiveStudents, but not Students or Enrolled, can find students enrolled

• …but not courses they are enrolled in

CREATE VIEW YoungActiveStudents (name, grade)
AS SELECT S.name, E.grade

FROM Students S, Enrolled E
WHERE S.sid = E.sid and S.age < 21

SELECT name
FROM YoungActiveStudents
WHERE grade < 3.00

31Databases & Web Services – © P. Baumann

Relational Model: Summary

 Tabular representation of data

• Simple & intuitive, most widely used

 Rules ER relational model

• Sometimes direct mapping: attributes, keys & foreign keys, …

• Sometimes no direct support: inheritance, multiplicities, …

 Integrity constraints based on application semantics; DBMS enforces

• primary + foreign keys; domain constraints; …

• Sometimes inherent from modelling approach, ex: multiplicities

 SQL query language for generic set-oriented table handling (see next)

