
Databases & Web Services – © P. Baumann

The Web as a Frontend

to Database Services
www.w3schools.com

www.webdesign.com

…

Databases & Web Services – © P. Baumann

 1945 linking microfiches , by Vannevar Bush

 1960s Internet as (D)ARPA project:

fault-tolerant, heterogeneous WAN (cold war!)

term "Hypertext" coined by Ted Nelson at ACM 20th National Conference

 1976 Queen Elizabeth sends her first email. She's the first state leader to do so.

 1980 Berners-Lee at CERN writes notebook program to link arbitrary nodes

 1989 Berners-Lee makes a proposal on information management at CERN

 1990 Berners-Lee’s boss approves purchase of a NeXT cube

Berners-Lee begins hypertext GUI browser+editor and dubs it "WorldWideWeb"

First web server developed

 1991 May 17 – general release of WWW on central CERN machines

 1992 more browsers: Viola & Erwise released

 1994 > 200 web servers by start of year

Mosaic: easy to install, great support, first inline images (“much sexier”)

Andreessen & colleagues form “Mosaic Comm. Corp”; later "Netscape"

History: The Internet and the Web

Databases & Web Services – © P. Baumann

Internet & Web:

Basic Concepts

Databases & Web Services – © P. Baumann

Internet & WWW

 Internet originally 4 basic services, based on TCP & IP:

• telnet, ftp, mail, news

• Later many more: IRC, SSL, NTP, ...

telnet, ftp, ..., http
(application layer)

TCP
(transport layer)

IP
(network layer) Each computer has worldwide unique id

• IP address: n.n.n.n (32 bit IPv4, 128 bit IPv6)

• Domain name: subdomain.host.top-level-domain

• DNS to resolve

 World-Wide Web just another Internet service

• HTTP: Hypertext Transfer Protocol

• HTML: Hypertext Markup Language

• URIs (Uniform Resource Identifiers) [wikipedia]

Databases & Web Services – © P. Baumann

 Structure of an http URI:

• Naming scheme (http)

• Name of host computer + optionally port# (//www.cs.wisc.edu:80) – 80 is default

• Name of resource (~dbbook/index.html)

 Uniform naming schema to identify resources on the Internet

• resource can be anything: index.html, mysong.mp3, picture.jpg

• Syntax: scheme ":" [authority] [path] ["?" query]

• Ex: http://www.cs.wisc.edu/index.html, mailto:webmaster@bookstore.com, telnet:127.0.0.1

Uniform Resource Identifiers

http://www.cs.wisc.edu/~dbbook/index.html

 URL = Uniform Resource Locator (subset of URIs; old term)

• Identification via network "location"

Databases & Web Services – © P. Baumann

HTTP

Databases & Web Services – © P. Baumann

Hypertext Transfer Protocol

 What is a communication protocol?

• Set of rules that defines the structure of messages & communication process

• Examples: TCP, IP, HTTP

 What happens if you click on www.cs.wisc.edu/~dbbook/index.html?

• Client connects to server, transmits HTTP request to server

• Server generates response, transmits to client

• Both disconnect

 HTTP header describes content/action (text = ISO-8859-1), content for data

• RFC 2616

Databases & Web Services – © P. Baumann

HTTP Sample Request/Response

 Client sends:  Server responds:

GET ~dbbook/index.html HTTP/1.1
User-agent: Mozilla/4.0
Accept: text/*, image/gif, image/jpeg

HTTP/1.1 200 OK
Date: Mon, 04 Mar 2002 12:00:00 GMT
Server: Apache/1.3.0 (Linux)
Last-Modified: Mon, 01 Mar 2002 09:23:24 GMT
Content-Length: 1024
Content-Type: text/html

<html> <head></head>
<body>
<h1>Burns and Nobble Internet Bookstore</h1>
Our inventory:
<h3>Science</h3>
The Character of Physical Law
...
</body></html>

Try this:
$ telnet google.com 80
GET / HTTP/1.1
<3x newline>

Databases & Web Services – © P. Baumann

HTTP Request Structure

 Request line

• Http method field (GET and POST, more later)

• local resource field

• HTTP version field

GET ~/index.html HTTP/1.1

User-agent: Mozilla/4.0

Accept: text/*, image/gif, image/jpeg

 Type of client

 What types of files (MIME types) the client will accept

• MIME = Multipurpose Internet Mail (!) Extensions = file type naming system

• MIME types other than text/*, image/jpeg, image/gif, image/png

need browser plug-in or helper application

Databases & Web Services – © P. Baumann

HTTP Response Structure

 Status line

• HTTP version: HTTP/1.1

• Status code

• Server message, textual

 Date when the object was created

 Number of bytes being sent

 What type is the object being sent

 …plus potentially many more items, such as server type, server time, etc.

 The payload!

HTTP/1.1 200 OK

Last-Modified: Mon, 01 Mar 2002 09:23:24 GMT

Content-Length: 1024

Content-Type: text/html

•200 OK: Request succeeded
•400 Bad Request: Request could not be fulfilled by the server
•404 Not Found: Requested object does not exist on the server
•505 HTTP Version not supported

<html>…</html>

Databases & Web Services – © P. Baumann

HTTP Doesn't Remember!

 HTTP stateless on the granularity of requests

• No “sessions”

• Every message completely self-contained

• No previous interaction “remembered” by protocol

 Implication for applications:

Any state information (shopping carts, user login information, …)

need to be encoded in every HTTP request and response!

• More later!

Databases & Web Services – © P. Baumann

Conventions

 index.html (Windows: index.htm), .php, ...

• If local path ends with directory, this file is assumed

• Ex: http://www.myserver.foo/Downloads

• If not found: directory listing is displayed

• Put dummy index.html if you don't want this, or disable default in server

 Local path ~name/path

• leads to ~name/public_html/path where name is local user name

Databases & Web Services – © P. Baumann

HTML & Friends

Databases & Web Services – © P. Baumann

HTML Primer

 HTML is a data exchange format

• Unformatted ASCII

• Proper indentation increases readability

• Text interspersed with tags, some with attributes;

usually start and end tag:

• Opening tags: “<” element name “>”

• Closing tags: “</” element name “>”

• Tags can be nested: <h1>my text</h1>

<h1 align="center">headline</h1>

 Many editors automatically generate HTML directly from your document

• But you need to know HTML too, want to generate it lateron!

• And tool's code sometimes has bad quality, cf. Microsoft Word “Save as html”

Databases & Web Services – © P. Baumann

HTML Primer (contd.)

<h1>An important heading</h1>

<h2>A slightly less important heading</h2>

<p>This is the first paragraph.</p>

My link list:

This is a link to W3C

This a link to Peter's page

Go to top

Databases & Web Services – © P. Baumann

<h1>An important heading</h1>

<h2>A slightly less important heading</h2>

<p>This is the first paragraph.</p>

My link list:

This is a link to W3C

This a link to Peter's page

Go to top

 Text structuring

• Headlines

• Paragraphs, text emphasis

 Links

• External

• Relative

• Internal

 Images

 Text structuring (contd.)

• Lists

HTML Primer (contd.)

Databases & Web Services – © P. Baumann

HTML Primer (contd.)

 Text structuring (contd.)

• tables

• row

• column heading

• regular column

<table>

<tr>

<th>Year</th>

<th>Sales</th>

</tr>

<tr>

<td>2000</td>

<td>$18M</td>

</tr>

<tr>

<td>2001</td>

<td>$25M</td>

</tr>

<tr>

<td>2002</td>

<td>$36M</td>

</tr>

</table>

Databases & Web Services – © P. Baumann

HTML Forms

 Common way to communicate data from client to server

 General format of a form:

• <form action=“page.jsp” method=“GET” name=“loginForm”>

<input type=… value=… name=…>

</form>

 Components of an HTML form tag:

• action: URI that handles the content

• method: HTTP GET or POST

• name: Name of the form; can be used in client-side scripts to refer to the form

Databases & Web Services – © P. Baumann

HTML and DOM

<TABLE>

<TBODY>

<TR>

<TD>Shady Grove</TD>

<TD>Aeolian</TD>

</TR>

<TR>

<TD>Over the River, Charlie</TD>

<TD>Dorian</TD>

</TR>

</TBODY>

</TABLE>

Exercise:

draw DOM tree

for some HTML snippet

Databases & Web Services – © P. Baumann

Document Object Model

 HTML document actually describes a tree structure

• ...that becomes manifest as "real" tree only within browser

 So far: how can I describe such a tree for input into rendering engine?

 Dynamic HTML: manipulate tree representation while being displayed

 Document Object Model (DOM) =

platform and language neutral interface that allows programs and scripts to

dynamically access and update content & structure of HTML documents

• Intro: http://www.w3schools.com/htmldom/default.asp

• Definition: http://www.w3.org/TR/DOM-Level-2-HTML

http://www.w3schools.com/htmldom/default.asp
http://www.w3schools.com/htmldom/default.asp
http://www.w3schools.com/htmldom/default.asp
http://www.w3.org/TR/DOM-Level-2-HTML
http://www.w3.org/TR/DOM-Level-2-HTML
http://www.w3.org/TR/DOM-Level-2-HTML
http://www.w3.org/TR/DOM-Level-2-HTML
http://www.w3.org/TR/DOM-Level-2-HTML
http://www.w3.org/TR/DOM-Level-2-HTML
http://www.w3.org/TR/DOM-Level-2-HTML
http://www.w3.org/TR/DOM-Level-2-HTML
http://www.w3.org/TR/DOM-Level-2-HTML

Databases & Web Services – © P. Baumann

 Idea: Separate display style from structure & contents

• W3C recommendation = standard

 File reference to CSS, placed in HTML <head> section

• <link rel=“style sheet” type=“text/css” href=“books.css”>

 Media specific style sheets

• <link rel="stylesheet" type=“text/css” media="screen" href="website.css">
<link rel="stylesheet" type=“text/css” media="print, embossed" href="print.css">
<link rel="stylesheet" type=“text/css” media="aural" href="speaker.css">

CSS: Cascading Style Sheets

Databases & Web Services – © P. Baumann

 Effect on HTML page display:

• same effect as:
<h1 style=”font-family:Arial,sans-serif”>

but applies to all <h1>

• Style used in a tag:
 is red

(overriding a default & a definition in CSS)

• Style can be used with any tag:
<p class=”special”>

body { font-family:Arial,sans-serif; }

a:link { color:red }

.special { color:green; font-size:large; }

CSS Syntax

 CSS syntax (simplified)

• css-file ::= css-def*

• css-def ::= selector "{" (prop ":" val)* "}"

• selector ::= tag
| [tag] "." class
| [tag] ":" pseudo

• elem ::= STRING

• class ::= STRING

• pseudo ::= “link" | "visited" | …

• prop ::= <predefined prop names>

• val ::= STRING
| NUMBER ["px" | "cm" | …]

Databases & Web Services – © P. Baumann

Internet & WWW

 Internet originally 4 basic services, based on TCP & IP:

• telnet, ftp, mail, news

• Later many more: IRC, SSL, NTP, ...

telnet, ftp, ..., http
(application layer)

TCP
(transport layer)

IP
(network layer)

 Each computer has worldwide unique id

• IP address: n.n.n.n (32 bit IPv4, 128 bit IPv6)

• Domain name: subdomain.host.top-level-domain

• DNS to resolve

 World-Wide Web just another Internet service

• HTTP: Hypertext Transfer Protocol

• HTML: Hypertext Markup Language

• URIs (Uniform Resource Identifiers)

[wikipedia]

Databases & Web Services – © P. Baumann

Hypertext Transfer Protocol

 What is a communication protocol?

• Set of rules that defines the structure of messages & communication process

• Examples: TCP, IP, HTTP

 What happens if you click on www.cs.wisc.edu/~dbbook/index.html?

• Client connects to server, transmits HTTP request to server

• Server generates response, transmits to client

• Both disconnect

 HTTP header describes content/action (text = ISO-8859-1), content for data

• RFC 2616

Databases & Web Services – © P. Baumann

HTTP Request Structure

 Request line

• Http method field (GET and POST, more later)

• local resource field

• HTTP version field

GET ~/index.html HTTP/1.1

User-agent: Mozilla/4.0

Accept: text/*, image/gif, image/jpeg

 Type of client

 What types of files (MIME types) the client will accept

• MIME = Multipurpose Internet Mail (!) Extensions = file type naming system

• MIME types other than text/*, image/jpeg, image/gif, image/png

need browser plug-in or helper application

Databases & Web Services – © P. Baumann

HTTP Response Structure

 Status line

• HTTP version: HTTP/1.1

• Status code

• Server message, textual

 Date when the object was created

 Number of bytes being sent

 What type is the object being sent

 …plus potentially many more items, such as server type, server time, etc.

 The payload!

HTTP/1.1 200 OK

Last-Modified: Mon, 01 Mar 2002 09:23:24 GMT

Content-Length: 1024

Content-Type: text/html

•200 OK: Request succeeded
•400 Bad Request: Request could not be fulfilled by the server
•404 Not Found: Requested object does not exist on the server
•505 HTTP Version not supported

<html>…</html>

Databases & Web Services – © P. Baumann

Conventions

 index.html (Windows: index.htm), .php, ...

• If local path ends with directory, this file is assumed

• Ex: http://www.myserver.foo/Downloads

• If not found: directory listing is displayed

• Put dummy index.html if you don't want this, or disable default in server

 Local path ~name/path

• leads to ~name/public_html/path where name is local user name

Databases & Web Services – © P. Baumann

HTTP Sample Request/Response

 Client sends:  Server responds:

GET ~dbbook/index.html HTTP/1.1
User-agent: Mozilla/4.0
Accept: text/*, image/gif, image/jpeg

HTTP/1.1 200 OK
Date: Mon, 04 Mar 2002 12:00:00 GMT
Server: Apache/1.3.0 (Linux)
Last-Modified: Mon, 01 Mar 2002 09:23:24 GMT
Content-Length: 1024
Content-Type: text/html

<html> <head></head>
<body>
<h1>Burns and Nobble Internet Bookstore</h1>
Our inventory:
<h3>Science</h3>
The Character of Physical Law
...
</body></html>

Try this:
$ telnet google.com 80
GET / HTTP/1.1
<3x newline>

Databases & Web Services – © P. Baumann

HTML Primer

 HTML is a data exchange format

• Unformatted ASCII

• Proper indentation increases readability

• Text interspersed with tags, some with attributes;

usually start and end tag:

• Opening tags: “<” element name “>”

• Closing tags: “</” element name “>”

• Tags can be nested: <h1>my text</h1>

<h1 align="center">headline</h1>

 Many editors automatically generate HTML directly from your document

• But you need to know HTML too, want to generate it lateron!

• And tool's code sometimes has bad quality, cf. Microsoft Word “Save as html”

Databases & Web Services – © P. Baumann

HTML Primer (contd.)

<title>My first HTML document</title>

<h1>An important heading</h1>

<h2>A slightly less important heading</h2>

<p>This is the first paragraph.</p>

My link list:

This is a link to W3C

This a link to Peter's page

Go to top

 Text structuring

• Title (for browser title bar)

• Headlines

• Paragraphs, text emphasis

 Links

• External

• Relative

• Internal

 Images

• use alt, width, height attributes!

 Text structuring (contd.)

• Lists

Databases & Web Services – © P. Baumann

HTML Primer (contd.)

 Text structuring (contd.)

• tables

• row

• column heading

• regular column

<table>

<tr>

<th>Year</th>

<th>Sales</th>

</tr>

<tr>

<td>2000</td>

<td>$18M</td>

</tr>

<tr>

<td>2001</td>

<td>$25M</td>

</tr>

<tr>

<td>2002</td>

<td>$36M</td>

</tr>

</table>

Databases & Web Services – © P. Baumann

CSS: Cascading Style Sheets

 Idea: Separate display style from structure & contents

• W3C recommendation = standard

 Define appearance of particular items

• HTML element:

• Self-defined:

• Special:

 All HTML code of site references

common CSS file  Corporate Design

body { font-family: Arial,sans-serif; }

a:link { color: red; }

.special { color: green; font-size: large; }

<link rel=“style sheet” type=“text/css” href=“books.css”>

<html>
<body>

<h1>Title in Arial, but bold</h1>
<div id=“special”>I am different</div>
link in red

</body>
</html>

Databases & Web Services – © P. Baumann

Summary: WWW and HTML

 WWW: another Internet service,

aimed at easily traversing interconnected documents

 Protocol: HTTP, data exchange format: HTML

• captures document structure according to fixed schema

 Browser = program that

• gets page address; fetches HTML (+ likely additional files); renders page for display

 Separation of concerns:

• HTML for structure and contents

• CSS for layout

• JavaScript for Dynamic HTML (see next: AJAX)

Databases & Web Services – © P. Baumann

HTTP: GET, POST ...and the REST

Databases & Web Services – © P. Baumann

GET Requests

 HTTP defines request types: GET, POST, PUT, DELETE, …

 Request modification through key/value pairs

• ?

• &

 Client sends:

http://acme.com/srv ? mybasket=6570616275 & article=656e44204456

Databases & Web Services – © P. Baumann

Request Parameters: How Passed?

 GET parameters: URL text

• Can be cached, bookmarked

• Reload / back in history harmless

• Data visible in URL

 POST parameters: HTTP message body

• Not cached, bookmarked

• Reload / back in history re-submits

• Data not visible,

not in history,

not in server logs

GET srv?k1=v1&k2=v2 HTTP/1.1

POST srv HTTP/1.1

k1=v1&k2=v2

http://www.w3schools.com/tags/ref_httpmethods.asp

http://www.w3schools.com/tags/ref_httpmethods.asp
http://www.w3schools.com/tags/ref_httpmethods.asp
http://www.w3schools.com/tags/ref_httpmethods.asp

Databases & Web Services – © P. Baumann

REST

 REST

= Representational State Transfer

• Resource + URI

• Web = one address space

• representation

• Client requests follow xlink

•  new state

 Not a standard nor product,
but „architectural style“

• = way to craft Web interface

 URI defines resource

being requested

• Consistent design philosophy

• easy to follow

 Relies on four basic

http operations:

• GET – Query

• POST – Update

• PUT – Add

• DELETE – Delete

[Thomas Roy Fielding, 2002]

Databases & Web Services – © P. Baumann

Sample RESTful Application

 Scenario: online shop

 Fetch information: "shopping basket with id 5873"

• Response:

• Client can follow links, that changes its state

• No side effect (status change) on server side

GET /shoppingBasket/5873

<shoppingBasket xmlns:xlink="http://www.w3.org/1999/xlink">

<customer xlink:href="http://shop.oio.de/customer/5873">5873</customer>

<position nr="1" amount="5">

<article xlink:href="http://shop.oio.de/article/4501" nr="4501">

<description>lollypop</description>

</article>

</position>

<position nr="2" amount="2">... </position>

</shoppingBasket>

Databases & Web Services – © P. Baumann

Sample RESTful Application (contd.)

 Place order:

"add article #961 to shopping basket #5873"

• Changes server state

POST /shoppingBasket/5873

articleNr=961

PUT /article

<article>

<description>Rooibush tea</description>

<price>2.80</price>

...

</article>

HTTP/1.1 201 OK

...

http://shop.oio.de/article/6005

DELETE /article/6005

 Add article

• Again, changes server state

• Returns new id

 Delete article

• Server state change

Databases & Web Services – © P. Baumann

Security

 REST: typed requests, firewall can judge good for security

hermes.oio.de - - [26/Nov/2002:12:43:07 +0100] "GET /shoppingBasket/6 HTTP/1.1" 200

hermes.oio.de - - [26/Nov/2002:12:43:08 +0100] "GET /article/12 HTTP/1.1" 200

hermes.oio.de - - [26/Nov/2002:12:43:08 +0100] "GET /article/5 HTTP/1.1" 200

hermes.oio.de - - [26/Nov/2002:12:43:09 +0100] "POST /shoppingBasket/6 HTTP/1.1" 200

hermes.oio.de - - [26/Nov/2002:12:43:13 +0100] "POST /shoppingBasket/6 HTTP/1.1" 200

hermes.oio.de - - [26/Nov/2002:12:43:14 +0100] "GET /Order/3 HTTP/1.1" 200

 admins much more inclined to open firewall for REST services

than for eg SOAP

Databases & Web Services – © P. Baumann

REST: How Powerful?

 Local path uses historical directory syntax  strict hierarchy

• Standard Web servers, proxies etc can cache

 What breaks hierarchies

• Multi-dimensional indexing – Lat/Long/height/time has no particular sequence

• SQL: joins – join tables come in no particular sequence

• SQL: complex predicates – .../filter1/filter2/filter3/... cannot express AND / OR / NOT

• SQL: nested queries

 Remedy: old-school KVP

• So much more powerful, but no caching etc.

http://.../service-endpoint/MyShop/ShoppingBaskets/14731/Article/67236

http://.../service-endpoint/MyShop?q=select-from-where

Databases & Web Services – © P. Baumann

REST: Appraisal

 Strengths

• Simple paradigm; Web = RESTful resource

• Caching (except POST)

• Proven base stds: http, URI, MIME, XML/JSON

• Oops: cookies break REST paradigm

 Weaknesses

• Assumes addressability by path + identifier (URI!) = single-root hierarchies
only fraction of SQL power

• Schema to represent all URIs is complex

• response data structure definition outside REST

• limited support for HTTP PUT & DELETE in popular development platforms

• Power of http headers not accessible via browser URL

Databases & Web Services – © P. Baumann

Summary

 Web services: client invokes function on server

• Remote Procedure Call (RPC)

 Web World is evolving

• New paradigms emerging (and some disappearing)

• GET/KVP, POST/XML, SOAP, REST, JSON, OpenAPI, ...

 Service protocol independent from database query languages!

• GET/KVP:

• POST:

• REST

http:/acme.com/access-point?q=select%20*%20from...

http:/acme.com/access-point

q=select *from...

Databases & Web Services – © P. Baumann

Interaction:

HTML Forms, AJAX

Databases & Web Services – © P. Baumann

GET Requests

 Request = “command” sent by client to server = text string

• Ex:

 HTTP offers “commands” aka “request types”

• GET obtain information

• POST upload

• PUT create new object

• DELETE well…

• Etc.

http://acme.com/srv/index.html

Databases & Web Services – © P. Baumann

How to Pass Back Parameters

from Client to Server?

 Client: HTML form

<?

echo 'You have entered ' . $_GET['wordKey'];

?>

<form method='GET' action='http://.../input.php'>

word:

<input name='wordKey' type='text'>

<input type='submit' value='Go'>

</form>

 Server: languages typically provides parameters in an array

Databases & Web Services – © P. Baumann

Request Parameters: How Passed?

 Key/value pairs (KVPs) appended to service URL

• URL:

• Server sees: all following “?”, separator “&”

 GET: appended to URL

• Can be cached & bookmarked; reload / back in history ok

• Data visible in URL

 POST: in HTTP message body

• Not cached, bookmarked; reload / back in history re-submits

• Data not visible, not in history, not in server logs

GET srv?k1=v1&k2=v2 HTTP/1.1

POST srv HTTP/1.1

k1=v1&k2=v2

http://www.w3schools.com/tags/ref_httpmethods.asp

http://acme.com/srv ? mybasket=6570616275 & article=656e44204456

http://www.w3schools.com/tags/ref_httpmethods.asp
http://www.w3schools.com/tags/ref_httpmethods.asp
http://www.w3schools.com/tags/ref_httpmethods.asp

Databases & Web Services – © P. Baumann

We Want More!

 Challenge: want more interactivity than "click link / reload complete page“

• Early attempt: HTML iframe

 Microsoft IE5 XMLHttpRequest object part of std DOM

• Outlook Web Access, supplied with Exchange Server 2000

• Windows: ActiveX control Msxml2.XMLHTTP (IE5), Microsoft.XMLHTTP (IE6)

 "AJAX" coined by Jesse James Garnett, 2005

• made popular in 2005 by Google Suggest

• start typing into Google's search box list of suggestions

Databases & Web Services – © P. Baumann

AJAX

 AJAX = Asynchronous Javascript and XML

• web development technique

 Goal: increase interactivity, speed, functionality, usability

• Avoid complete page reload small data loads  more responsive

• asynchronous: c/s communication independent from normal page loading

 Key idea: Client DOM manipulated to dynamically display & interact

• Inject response into any place(s) of DOM tree

 standardized components, supported by all major browsers:

• JavaScript, XML / JSON, HTML, CSS

Databases & Web Services – © P. Baumann

AJAX by Example

Databases & Web Services – © P. Baumann

Traditional Style

 Client:

<?

echo 'You have entered ' . $_GET['wordKey']

. ' and your IP is: ' . $_SERVER['REMOTE_ADDR'];

?>

<form method='GET' action='http://.../ajax-ex.php'>

word:

<input name='wordKey' type='text'>

<input type='submit' value='Go'>

</form>

You have entered Moribundus, and your IP is: 127.0.0.1

 Server:

 Client, after page reload:

Databases & Web Services – © P. Baumann

Step 1: Avoid Complete Page Reload

function callBack()

{ var SERVICE = 'http://.../ajax-ex.php';

var req = new XMLHttpRequest();

var val = document.forms['wordForm'].wordKey.value;

req.open('GET', SERVICE+'?wordKey='+val, true);

req.setRequestHeader('Content-Type',

'application/x-www-form-urlencoded');

req.send(null);

req.onreadystatechange = function()

{ if (req.readyState == 4)

document.forms['wordForm'].result.innerHtml =

req.responseText;

}

}

<form name='wordForm'>

word:

<input name='wordKey' type='text'>

<input type='button' value='Go' onClick='JavaScript:callBack()'>

<div id='result'></div>

</form>

word: _________________

You have entered Moribundus, and your IP is: 127.0.0.1

0 request not initialized

1 request set up

2 request sent

3 request in process

4 request complete

Databases & Web Services – © P. Baumann

Step 2: Avoid SUBMIT Button

 Before: just re-implemented submit; now: allow c/s activity at any time

• Event handlers

 Ex: suggest keywords with every char typed

• No submit button!

<? ...

$query = "select entry from Airports

where entry like '" . $_GET['wordKey'] . "%'";

$result = mysql_query($query);

while ($row = mysql_fetch_array($result))

{

print $row['entry'] . ",";

}

?>

<input name='wordKey' onKeyUp='JavaScript:callBack()'>

How to ship back

& inject data?

Databases & Web Services – © P. Baumann

JSON

 JSON = JavaScript Object Notation

• Lightweight data interchange format

• MIME type: application/json (RFC 4627)

• text-based, human-readable

 alternative to XML use

• Subset of JavaScript's object literal notation

• 10x faster than XML parsing

• _way_ easier to handle

• JSON parsing / generating code readily available for many languages

"JSON is XML without garbage"

Databases & Web Services – © P. Baumann

<? echo '{' + '"firstName":' + obj.firstName + ','

+ '"lastName":' + obj.lastName + ','

… + '}'

?>

JSON Example

 Server

sends:

req.onreadystatechange=function()

{ if(req.readyState==4)

{ var p = eval("(" + req.responseText + ")");

document.myForm.firstName.value = p.firstName;

}

}

 JSON string

sent from

server:

 response

parsing code:

{ "firstName": "John",

"lastName": "Smith",

"address":

{ "streetAddress": "21 2nd Street",

"city": "New York",

"state": "NY",

"postalCode": 10021

},

"phoneNumbers": ["212 732-1234", "646 123-4567"]

}

Databases & Web Services – © P. Baumann

JSON Security Concerns

 JavaScript eval()

• most JSON-formatted text is also syntactically legal JavaScript code!

• built-in JavaScript eval() function executes code received

 Invitation to hack:

embed rogue JavaScript code (server-side attack),

intercept JSON data evaluation (client-side attack)

• Safe alternative: parseJSON() method,

see ECMAScript v4 and www.json.org/json.js

 Cross-site request forgery

• malicious page can request & obtain JSON data belonging to another site

Databases & Web Services – © P. Baumann

Appraisal: AJAX Advantages

 Reduced bandwidth usage

• No complete reload/redraw, HTML generated locally, only actual data transferred

payload coming down much smaller in size

• Can load stubs of event handlers, then functions on the fly

 Separation of data, format, style, and function

• encourages programmers to clearly separate methods & formats:

Raw data / content normally embedded in XML

webpage HTML / XHTML

web page style elements CSS

Functionality JavaScript + XMLHttp + server code

Databases & Web Services – © P. Baumann

 Response time concerns

from network latency

• Web transfer hidden effects from
delays sometimes difficult to understand
for users

 Reliance on JavaScript

• JavaScript compatibility issue
blows up code;

Remedy: libraries such as prototype

• IDE support used to be poor, changing

• Can switch off JavaScript in my browser

 Security

• Can fiddle with data getting into browser

Appraisal: AJAX Disadvantages

 Browser integration

• dynamically created page

not registered in browser history

• bookmarks

 Search engine optimization

• Indexing of Ajax page contents?

• (not specific to Ajax, same issue with

all dynamic data sites)

 Web analytics

• Tracking of accessing page vs portion

of page vs click?

Databases & Web Services – © P. Baumann

Summary

 AJAX allows to add desktop flavour to web apps

• JSON as lightweight, fast alternative to XML

 Web programming paradigm based on existing, available standards

 Issues: browser compatibility, security, web dynamics

 Many usages:

• real-time form data validation; autocompletion; bg load on demand; sophisticated user

interface controls and effects (trees, menus, data tables, rich text editors, calendars,

progress bars, ...); partial submit; mashups (app mixing); desktop-like web app

Databases & Web Services – © P. Baumann

Resources

 Books:

• Michael Mahemoff: Ajax Design Patterns. O'Reilly, 2006

• Mark Pruett: Ajax and Web Services. O'Reilly, 2006

 Web:

• www.openajaxalliance.org/

• w3schools.org/ajax

• Mozilla Developer Center: AJAX:Getting Started

• developer.mozilla.org/en/docs/AJAX:Getting_Started

• www.json.org

Databases & Web Services – © P. Baumann

Tool Support: Examples

 jQuery, http://jquery.com/

 AJAX:

$.ajax({

url: "/api/getWeather",

data: {

zipcode: 97201

},

success: function(data) {

$("#weather-temp").html("" + data + " degrees");

}

});

$("button.continue").html("Next Step...")

http://jquery.com/

Databases & Web Services – © P. Baumann

Kore rawa e rawaka te reo kotahi

browser

DBMS

HTML

CSS

SQL

JavaScript

python

business logic

