
Databases & Web Services – © P. Baumann

3-Tier Web Architectures

Ramakrishnan & Gehrke, Chapter 7

www.w3schools.com

www.webdesign.com

…

Databases & Web Services – © P. Baumann

 Presentation

• Primary interface to the user

• Needs to adapt to different display devices (PC, PDA, cell phone, voice access, …)

 Application (“business”) logic

• Implements business logic (implements complex actions, maintains state between different
steps of a workflow)

• Accesses different data management systems

 Data management

• One or more standard database management systems

 system architecture determines whether these three components reside on

a single system (“tier) or are distributed across several tiers

Components of Data-Intensive Systems

Databases & Web Services – © P. Baumann

Client-Server Architectures

 Work division: Thin client

• Client implements only graphical user interface

• Server implements business logic and data management

 Work division: Thick client

• Client implements both graphical user interface and business logic

• Server implements data management

Databases & Web Services – © P. Baumann

Technologies

JSP, Servlets, CGI, …

Tables, XML, JSON, …
Stored Procedures

HTML, CSS, Javascript

Ajax

Cookies

Database Management System

Application Server

Presentation Tier
(Web Server & Browser)

Databases & Web Services – © P. Baumann

The Presentation Tier

 Recall: Functionality of the presentation tier

• Primary interface to the user

• Needs to adapt to different display devices (PC, PDA, cell phone, voice access?)

• For efficiency, simple functionality (ex: input validity checking)

 Mechanisms:

• HTML Forms

• Dynamic HTML / JavaScript

• CSS

Databases & Web Services – © P. Baumann

JavaScript

 Goal: Add functionality to the presentation tier

 Sample applications:

• Detect browser type and load browser-specific page

• Browser control: Open new windows, close existing windows (example: pop-ups)

• Client-side interaction (conditional forms elements, validation, …)

 JavaScript optimal for Web browser because:

• Built-in engine – always available, fast

• Operates directly on “browser brain” = DOM

Databases & Web Services – © P. Baumann

JavaScript: Example

 HTML Form:  Associated JavaScript:

<form method=”GET“ name=“LoginForm”

action="TableOfContents.jsp">

Login:

<input type="text" name="userid"/>

Password:

<input type="password“ name="password"/>

<input type="submit“ value="Login“

name="submit” onClick=“testEmpty()”/>

<input type=“reset” value=“Clear”/>

</form>

<script language="javascript">

function testEmpty()

{ result = false;

loginForm = document.LoginForm;

if ((loginForm.userid.value == "") ||

(loginForm.password.value == ""))

alert(„Error in credentials.„);

return result;

}

</script>

Databases & Web Services – © P. Baumann

The Middle (Application) Tier

 Recall: Functionality of the middle tier

• Encodes business logic

• Connects to database system(s)

• Accepts form input from the presentation tier

• Generates output for the presentation tier

 Mechanisms:

• CGI: Protocol for passing arguments to programs running at the middle tier

• Application servers: Runtime environment at the middle tier

• Servlets: Java programs at the middle tier

• PHP: Program parts in schematic documents (see earlier)

• How to maintain state at the middle tier

Databases & Web Services – © P. Baumann

Ex: Java With HTML Inside

Databases & Web Services – © P. Baumann

Where to Keep Application State?

 Client-side state

• Information is stored on the client‟s computer in the form of a cookie

 Hidden state

• Information is hidden within dynamically created web pages

 Server-side state

• Information is stored in a database, or in the application layer‟s local memory

Databases & Web Services – © P. Baumann

Server-Side State

 Various types of server-side state, such as:

 1. Store information in a database

• Data will be safe in the database

• BUT: requires a database access to query or update the information

 2. Use application layer‟s local memory

• Can map the user‟s IP address to some state

• BUT: this information is volatile and takes up lots of server main memory

Databases & Web Services – © P. Baumann

 Advantages

• Easy to use in Java Servlets / PHP

• simple way to persist non-essential data
on client even when browser has closed

 Disadvantages

• Limit of 4 kilobytes

• Users can (and often will) disable them

 Usage: store interactive state

• current user‟s login information

• current shopping basket

• Any non-permanent choices user has
made

Client-side State: Cookies

 Cookie = (Name, Value) pair

 Text stored on client, passed to the

application with every HTTP request

• Lifetime can be preset (eg, 1 hour)

• Can be disabled by client

• wrongfully perceived as "dangerous",

therefore will scare away potential site

visitors if asked to enable cookies

Databases & Web Services – © P. Baumann

Hidden State

 overcome cookie disabling

 Can “hide” data in two places:

• Hidden fields within a form

• path information

 Requires no client or server “storage” of information

• state information passed inside of each web page – “on the wire”

Databases & Web Services – © P. Baumann

Hidden State: Hidden Fields

 Declare hidden fields within a form:

• <input type=„hidden‟ name=„user‟ value=„username‟/>

 Advantages

• Users will not see information unless they view HTML source

 Disadvantages

• If used prolifically, it‟s a performance killer

– EVERY page must be contained within a form

• Works only in presence of forms

Databases & Web Services – © P. Baumann

Hidden State: KVP Information

 Information stored in URL GET request:

• http://server.com/index.htm?user=jeffd

• http://server.com/index.htm?user=jeffd&preference=pepsi

 Parsing field in Java:

• javax.servlet.http.HttpUtils.parserQueryString()

 Advantages

• Independent from forms

 Disadvantages

• Limited to URL size (some kB)

Databases & Web Services – © P. Baumann

Multiple state methods

 Typically all methods of state maintenance are used:

• User logs in and this information is stored in a cookie

• User issues a query which is stored in the URL information

• User places an item in a shopping basket cookie

• User purchases items and credit-card information is stored/retrieved from a database

• User leaves a click-stream which is kept in a log on the web server (which can later be

analyzed)

Databases & Web Services – © P. Baumann

 Never use anything blindly that comes from client side

• don't assume that JavaScript code has been executed

• double check cookies on server

• don't trust hidden fields contents

 never assume anything!

• set defaults (define in a central place!)

 Clear state after request response

 as with any API: clean, defensive programming

• perform standard plausi checks:
admissible number ranges, empty strings, max string lengths!

 Be paranoid !!!

Some Web Service Security Hints

Databases & Web Services – © P. Baumann

Summary: 3-Tier Architectures

 Web services commonly architected as having 3 components

• Presentation / application / data management tier

 Application tier needs most implementation flexibility

• Rich choice of platforms (Java servlets, PHP, ...), each with tool support

 To maintain state, use:

• Hidden form fields, hidden paths, cookies, server store, …

 For every aspect & component, security is an issue!

Databases & Web Services – © P. Baumann

DBWS Relevance

 In the project: LAMP stack

• Linux, Apache, MySQL, PHP/python

 Alternatives:

• MERN stack:

• Node.js: JavaScript runtime bringing JavaScript to the server

• MongoDB: A document database

• Express: Fast, minimalist web framework for Node.js

• React: JavaScript front-end library for building user interfaces

• MEAN stack

• MongoDB, Express.js, AngularJS, and Node.js

DBMS Tier

Application Tier

Presentation Tier

Linux

MySQL

PHP, python

Apache, HTML, ...

https://codingthesmartway.com/the-mern-stack-tutorial-building-a-react-crud-application-from-start-to-finish-part-1
https://www.ibm.com/topics/mean-stack

