

Relational Algebra

Molina, Ullman, Widom

Database Management: Complete Book, Chapters 2 & 5

Databases & Web Services – © P. Baumann

C>ONSTRUCTOR UNIVERSITY

Algebra

- 2 "fathers of algebra":
 - where algebra ≡ theory of equations
 → Greek *Diophantus*
 - where algebra ≡ rules for manipulating & solving equations
 → Persian *al-Khwarizmi*

Source: Wikipedia

Xorazm, Usbekistan

What is "Algebra"?

- Mathematical system consisting of:
 - Operands variables or values from which new values can be constructed
 - Operators symbols denoting procedures that construct new values from given values
 - Ex: ((x + 7)/(2 3)) + x
- Algebra A = (C,OP)
 - -- "simplest" mathematical structure:
 - C nonempty carrier set (=value set)
 - OP nonempty operation set
 - C closed under OP expressions

Selection

- R1 := σ_{c} (R2)
 - C : condition on attributes of R2.
 - R1 is all those tuples of R2 that satisfy C.

sid name login gpa
53666 Jones jones@cs 3.4
53688 Smith smith@eecs 3.2
53650 Smith smith@math 3.8

sid	name	login	gpa
53666	Jones	jones@cs	3.4
53688	Smith	smith@eecs	3.2

Selection: Observations

- unary operation: 1 table
- conditions apply to each tuple individually
 - condition cannot span tuples (how to do that?)
- degree of $\sigma_{\rm C}({\rm R})$ = degree of R
 - Cardinality?
- Select is commutative: $\sigma_{C1}(\sigma_{C2}(R)) = \sigma_{C2}(\sigma_{C1}(R))$
 - Ex: $\sigma_{\text{S.sid}=\text{E.sid}}(\sigma_{\text{E.cid}=\text{C.cid}}(\text{R})) = \sigma_{\text{E.cid}=\text{C.cid}}(\sigma_{\text{S.sid}=\text{E.sid}}(\text{R}))$

Projection

- R1 := π_{attr}(R2)
 - attr : list of attributes from R2 schema
- For each tuple of R2:
 - extract attributes from list attr in order specified (!) \rightarrow R1 tuple
- Eliminate duplicate tuples

sid	name	login	gpa
E 2000	T		24
53666	Jones	jones@cs	3.4
53688	Smith	smith@eecs	3.2
53650	Smith	<pre>smith@math</pre>	3.8

$\pi_{\text{name,login}}(\text{Students}) =$				
name	login			
Jones Smith	jones@cs smith@eecs			

Projection: Observations

- Unary operation: 1 table
- removes duplicates in result
 - Cardinality?
 - Degree?
- Project is not commutative
- Sample algebraic law: π_{L1} ($\pi_{L2}(R)$) = $\pi_{L1}(R)$ if L1 \subseteq L2
 - else incorrect expression, syntax error
 - Ex: π_{name} ($\pi_{name,gpa}(R)$) = $\pi_{name}(R)$

Exercises

• $\pi_{\text{Name,login}}(\sigma_{\text{gpa=3.8}}(\text{Students})) = ?$

sid	name	login	gpa
53666	Jones	jones@cs	3.4
53688	Smith	smith@eecs	3.2
53650	Smith	smith@math	3.8

- "name and rating for sailors with rating > 8"
 - Note explicit operation sequence!

Cartesian Product

- project, select operators operate on single relation
- Cartesian product combines two: R3 = R1 x R2
 - Pair each tuple $t1 \in R1$ with each tuple $t2 \in R2$
 - Concatenation t1,t2 is a tuple of R3
 - Schema of R3 = attributes of R1 and then R2, in order
 - if attribute A of the same name in R1 and R2: use R1.A and R2.A
- Algebraic laws? Associative; commutative if ignoring attribute order; ...

Cross Product ("Cartesian Product")

Example U := R x S

(a) Relation R

В	C	D_{-}
2	5	6
4	7	8
9	10	11

(b) Relation S

	R.B	S.B	C	D_{-}
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

(c) Result $R \times S$

Natural Join

- T = <mark>R 🖂 S</mark>
 - Ex: Reserves ⋈_{bid} Sailors
- connect two relations:

",natural" = remove duplicate attribute(s)

• Equate attributes of same name, project out redundant attribute(s)

		A	R.B	S.B	C	D_{-}
	$B \mid C \mid D$	1	2	2	5	6
$A \mid B$	2 5 6	1	2	4	7	8
1 2	4 7 8	1	2	9	10	11
3 4	9 10 11	3	4	2	5	6
• •	0 1 10 1 11	3	4	4	7	8
(a) Relation R	(b) Relation S	3	4	9	10	11

A	B	C	D
1	2	5	6
3	4	7	8
			,
R	\succ	1 9	
T /			,

(c) Result R × S

Generalizing Join

- $T = R \bowtie_c S$
 - First build R x S, then apply σ_c
- Generalization of equi-join: A θ B where θ one of =, <, ...
 - Today, more general: σ_c can be any predicate
- Common join types:
 - Left join, right join, natural join, self join, ...

Relational Algebra: Summary

- = Mathematical definition of relations + operators
 - Query = Algebraic expression
- Relational algebra A = (R,OP) with relation R = A₁ ×...× A_n, OP={ π,σ,\times }
 - **Projection**: $\pi_{\text{attr}}(\mathsf{R}) = \{ \text{ r.attr} \mid \mathsf{r} \in \mathsf{R} \}$
 - Selection: $\sigma_p(R) = \{ r \mid r \in R, p(r) \}$
 - Cross product: $R_1 \times R_2 = \{(r_{11}, r_{12}, ..., r_{21}, r_{22}, ...) \mid (r_{11}, r_{12}, ...) \in R_1, (r_{21}, r_{22}, ...) \in R_2 \}$
 - Further: set operations, join, ...
- Set + predicate notation = Relational Calculus
 - Equally powerful as Relational Algebra proven by E Codd

Relational Calculus

- Tuple variable = variable over some relation schema
- Query Q = { T | $T \in R, p(T)$ }
 - R relation schema, p(T) predicate over T
- Example 1: "sailors with rating above 8"
 - Sailors = sid:int × sname:string × rating:int × age:float
 - = $\{ S \mid S \in Sailors \land S.rating > 8 \}$
- Example 2: "names of sailors who have reserved boat #103":
 - Reserves = sid:int × bid:int × day:date
 - = { S.sname | $\exists S \in Sailors \exists R \in Reserves: R.sid=S.sid \land R.bid=103$ }

Comparison of Relational Math

- Relational algebra
 - set-based formalization of selection, projection, cross product (no aggregation!)
 - Operation oriented = procedural = imperative; therefore basis of optimization
- Relational calculus
 - Same, but in predicate logic
 - Describing result = declarative; therefore basis of SQL semantics
- Equally powerful
 - proven by E Codd in 1970