
Databases & Web Services – © P. Baumann

Physical Database Design

Ramakrishnan & Gehrke, Chapter 17 & 18

Databases & Web Services – © P. Baumann

 Basic storage mapping: Table stored sequentially in a file

• How to organise for best search performance?

 Many alternatives – each ideal for some situations, not so good in others:

 Heap (random order) files

• Suitable when typical access is file scan retrieving all records

 Sorted Files

• Best if records retrieved in some order, or only `range’ of records needed

• Updates expensive

 Indexes = aux data structures to quickly address records by key

• Only index search key fields

Alternative Database File Organizations

Databases & Web Services – © P. Baumann

Index

 Idea: Create condensed `index’ (aka lookup) file

• All non-lookup attribtues left out  file smaller  search faster

• ...plus extra tricks

 predefined search key fields

• Index always on one table

• Any attribute can be search key

 speeds up retrieval of data entries k* with a given key value k

k1* k2* kN*k3* Data File

k2 kNk1 Index Filek3

...

...

Databases & Web Services – © P. Baumann

What to Search for?

 Point search: find exactly 1 record

• „Find student with sid=4711“

 Range search: find tuples where attribute values match range (interval)

• “Find all students with gpa > 3.0”

Databases & Web Services – © P. Baumann
Fill factor

B+ Tree Indexes

 Ordered Tree

 Leaf pages contain data entries, are chained (prev & next)

 Non-leaf pages have index entries to direct searches:

Index

pages

(“sequence set”; sorted by search key)

Leaf

pages

P0 K1 P1 K2 P2 Km Pm

[Bayer & McCreight, 1972]

Databases & Web Services – © P. Baumann

Example B+ Tree

 Find 28*? 29*? All > 15* and < 30*?

 Insert/delete: Find data entry in leaf, change it; adjust parent if needed

• change sometimes bubbles up the tree

 Complexity: O(logF N) where F = fan-out, N = # leaf pages

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Entries < 17 Entries  17

data entries

in leaf level are sorted

Databases & Web Services – © P. Baumann

Example B+ Tree: Traversal Pattern

2* 3*

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

point query range query

Databases & Web Services – © P. Baumann

B+ Trees in Practice

 Typical fill-factor: 67%

 Average fanout: 133

 Typical capacities:

• Height 3: 1333 = 2,352,637 records

• Height 4: 1334 = 312,900,700 records

 Can often hold top levels in buffer pool:

• Level 1 = 1 page = 8 Kbytes

• Level 2 = 133 pages = 1 Mbyte

• Level 3 = 17,689 pages = 133 MBytes

Databases & Web Services – © P. Baumann

Hash-Based Indexes

 Goal: compute address without disk access, i.e., in O(1)

 Idea: distribute data evenly into fixed number of “buckets”

• Compute location from key via Hashing function h: key  bucket

• Example hashing function: h(int r) = r*a mod b with b prime relative to a

• If keys match same address: overflow pages

 Hash index = collection of buckets + hashing function

• Bucket = primary page plus zero or more overflow pages

• Buckets contain data entries

 Good for equality, no support for range queries

Databases & Web Services – © P. Baumann

Summary

 Many alternative file organizations, each appropriate in some situation

 Index = collection of data entries

plus a way to quickly find entries with given key values

 If selection queries are frequent, sort file or build an index

• Hash indexes only good for equality search

• Sorted files and tree indexes best for range search; also good for equality search

• Files rarely kept sorted in practice; B+ tree index is better

 Understand workload and DBMS query plans

Databases & Web Services – © P. Baumann

Indexing Spatial Data

Databases & Web Services – © P. Baumann

 Spatial data

= multi-dimensional data

• Objects regions have location

• [+ spatial extent, ie, boundary]

 2 fundamentally distinct categories:

• Vectorial: point, line, region data in n-dimensional space

• Raster: n-D “images” = arrays

 Not only spatio-temporal data:

Also feature vectors extracted from text/images = non-spatial data!

• Usually very high-dimensional, 1000s

Outlook: Spatial Data Management

Points(X number, Y number, ptType: integer)

Databases & Web Services – © P. Baumann

 Point Queries

• "Show Bremen"

 Spatial Range Queries

• "Find all cities within 50 km of Bremen"

• Query has associated region (location,
boundary)

 Nearest-Neighbor Queries

• "Find the 10 cities nearest to Bremen"

• Results must be ordered by proximity

Types of Multidimensional Queries

 Spatial Join Queries

• "Find all cities near a lake"

• Expensive; join condition involves regions
and proximity!

 Similarity queries

• content-based retrieval

• "Given a face, find the five most similar

faces"

 …plus aggregation,

and several more

Databases & Web Services – © P. Baumann

Multiple B+ Trees?

 Query example:

select * from R where a0 < A < a1 and b0 < B < b1

A

B

a0 a1

b0

b1 - read tuple with a0<A<a1

- read tuple with b0<B<b1

- intersect

Several conventional indexes:

A

B

a0 a1

b0

b1 read only tuples

with a0<A<a1

and b0<B<b1

wanted:

 Specific family of n-D ("spatial") indexing techniques

• R-tree = balanced tree; widely used in GIS

• Grid Files, Quad trees, “space-filling” curves, …

Databases & Web Services – © P. Baumann

R-Tree

R1 R2

R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19

R3 R4 R5 R6 R7

 tree-structured n-D index [Guttman 1984]

 Index value = bounding box

• Node's box covers its subtree

• we do not search exact object boundaries, but their bounding boxes

•  2-step retrieval:
- bbox tree search,
- then exact-match step

Databases & Web Services – © P. Baumann

 Geographic Information Systems (GIS)

• Geospatial information; service standards by Open GeoSpatial Consortium (OGC)

• Vendors: ESRI, Intergraph, SmallWorld, …, Oracle, …; open-source: Grass, PostGIS, …

• All classes of spatial queries and data are common

 Computer-Aided Design / Manufacturing

• spatial objects, ex: surface of airplane fuselage

• Range queries and spatial join queries are common

 Multimedia Databases

• Images, video, text, etc. stored and retrieved by content

• First converted to feature vector form; high dimensionality

• Nearest-neighbor queries are the most common

Applications of Multidimensional Data

Databases & Web Services – © P. Baumann

Database Tuning

Databases & Web Services – © P. Baumann

 If a query runs slower than expected,

check if index needs to be re-built or statistics too old

 Sometimes, DBMS may not be executing the plan you had in mind.

Common areas of weakness:

• Selections involving null values; arithmetic or string expressions; OR conditions; …

• Missing features (ex: index-only strategies), join methods, poor size estimation, …

 Check plan used, adjust choice of indexes or rewrite query/view

• Avoid nested queries,
temporary relations,
complex conditions,
operations like DISTINCT and GROUP BY

Tuning Queries and Views

Databases & Web Services – © P. Baumann

 Understand workload:

• Queries vs. update

• What relations (sizes!), attributes, conditions, joins (selectivity!), …?

 Attributes in WHERE clause are candidates for index keys

• Exact match condition suggests hash index, range query suggests tree index

• Consider multi-attribute search keys for several WHERE clause conditions
• Order of attributes important for range queries

 Choose indexes that benefit as many queries as possible

• impact on updates: Indexes make queries faster, updates slower

• require disk space

 understand how DBMS evaluates queries & creates query evaluation plans

Index Selection Guidelines

Databases & Web Services – © P. Baumann

More Decisions to Make

 Change conceptual schema = ER diagram?

guided by workload, in addition to redundancy issues

• Consider alternative normalized schemas? (many choices!)

• “undo’’ some decompositions, settle for a lower normal form, such as 3NF?

(denormalization)

• Horizontal partitioning, replication, views ...see manuals

 Change logical schema = table definitions?

 If made after a database is in use, called schema evolution

Databases & Web Services – © P. Baumann

Masking Conceptual Schema Changes

 Assumption: few large (high-budget) contracts  important to be fast

 Split Contracts LargeContracts + SmallContracts, masked by view

• Regular users simply access Contracts

• high-profile users (boss) access LargeContracts for efficient execution

CREATE VIEW Contracts(cid, sid, jid, did, pid, qty, val)

AS

SELECT * FROM LargeContracts

UNION

SELECT * FROM SmallContracts

Databases & Web Services – © P. Baumann

Key Performance Factors

[LinkedIn Database list]

Databases & Web Services – © P. Baumann

PS: A Moderately Complex Query

