C>ONSTRUCTOR
UNIVERSITY

Physical Database Design

Ramakrishnan & Gehrke, Chapter 17 & 18

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Alternative Database File Organizations

Basic storage mapping: Table stored sequentially in a file

» How to organise for best search performance?

Many alternatives — each ideal for some situations, not so good in others:

Heap (random order) files

 Suitable when typical access is file scan retrieving all records

Sorted Files

 Best if records retrieved in some order, or only ‘range’ of records needed

» Updates expensive

Indexes = aux data structures to quickly address records by key

* Only index search key fields

Databases & Web Services — © P. Baumann

Index

= |dea: Create condensed ‘index’ (aka lookup) file

* All non-lookup attribtues left out — file smaller — search faster

 ...plus extra tricks

= predefined search key fields

 Index always on one table

 Any attribute can be search key

C>ONSTRUCTOR
UNIVERSITY

= speeds up retrieval of data entries k* with a given key value k

Index File

¥
k1*

S
k2*

+

k3*

KN*

Data File

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

What to Search for?

= Point search: find exactly 1 record
 Find student with sid=4711"

= Range search: find tuples where attribute values match range (interval)
* “Find all students with gpa > 3.0”

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR

UNIVERSITY
B+ Tree Indexes
l [Bayer & McCreight, 1972]
Index
pages coe
L T 2R 2R T
Leaf © oo > © oo > ° oo > ° oo
pages
(“sequence set”; sorted by search key)
= Ordered Tree
= |eaf pages contain data entries, are chained (prev & next)
= Non-leaf pages have index entries to direct searches:
[I
I
Fill factor j

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Example B+ Tree

ROO& data entries

il in leaf level are sorted
Entries <@ Entries > @
| 5 . 13 | , 27 30 |
N e VAR Ny
2% | 3* ﬁ\g* 7*| 8* ﬂ* 16* ﬁ_\EZ* 244 ﬁ_;* 29* T;* 34* 38*| 39*

= Find 28*7 29*7? All > 15* and < 30*?

= |nsert/delete: Find data entry in leaf, change it; adjust parent if needed

 change sometimes bubbles up the tree

= Complexity: O(loge N) where F = fan-out, N = # leaf pages

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Example B+ Tree: Traversal Pattern

i
/4N

27 30

i
7] 8* 14*[16* 227 244 27*| 29* T;* 34* 38*| 39*

point query range query

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

B+ Trees in Practice

Typical fill-factor: 67%

Average fanout: 133

Typical capacities:
Height 3: 1333 = 2,352,637 records
Height 4: 1334 = 312,900,700 records

Can often hold top levels in buffer pool:
Level 1= 1page = 8 Kbytes
Level 2= 133 pages= 1 Mbyte
Level 3 = 17,689 pages = 133 MBytes

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Hash-Based Indexes

Goal: compute address without disk access, i.e., in O(1)

Idea: distribute data evenly into fixed number of “buckets”

« Compute location from key via Hashing function h: key — bucket
« Example hashing function: h(intr) = r*amod b with b prime relative to a

* |f keys match same address: overflow pages

Hash index = collection of buckets + hashing function

 Bucket = primary page plus zero or more overflow pages

» Buckets contain data entries

Good for equality, no support for range queries

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Summary

= Many alternative file organizations, each appropriate in some situation

= |ndex = collection of data entries
plus a way to quickly find entries with given key values

= |f selection queries are frequent, sort file or build an index

 Hash indexes only good for equality search
 Sorted files and tree indexes best for range search; also good for equality search
 Files rarely kept sorted in practice; B+ tree index is better

= Understand workload and DBMS query plans

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Indexing Spatial Data

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Outlook: Spatial Data Management

= Spatial data Points(X number, Y number, ptType: integer)

= multi-dimensional data

 Objects regions have location

* [+ spatial extent, ie, boundary]

= 2 fundamentally distinct categories:

» \Vectorial: point, line, region data in n-dimensional space

 Raster: n-D “images” = arrays

= Not only spatio-temporal data:
Also feature vectors extracted from text/images = non-spatial data!

 Usually very high-dimensional, 1000s

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Types of Multidimensional Queries

= Point Queries

» "Show Bremen"

= Spatial Range Queries

» "Find all cities within 50 km of Bremen"

* Query has associated region (location,
boundary)

= Nearest-Neighbor Queries

» "Find the 10 cities nearest to Bremen"
» Results must be ordered by proximity

Databases & Web Services — © P. Baumann

Spatial Join Queries

» "Find all cities near a lake"
» Expensive; join condition involves regions

and proximity!

Similarity queries

* content-based retrieval

* "Given a face, find the five most similar
faces"

...plus aggregation,
and several more

Multiple B+ Trees?

= Query example:

C>ONSTRUCTOR
UNIVERSITY

select * from R where a, < A < a; and b, < B < b,

Several conventional indexes:

B
b,

D,

a, a, A

- read tuple with a,<A<a,
- read tuple with b,<B<Db,
- intersect

wanted:
B,
b1
by
a, a;, A

= Specific family of n-D ("spatial") indexing techniques

» R-tree = balanced tree; widely used in GIS

 Grid Files, Quad trees, “space-filling” curves, ...

Databases & Web Services — © P. Baumann

read only tuples
with a,<A<a,
and by,<B<b,

NSTRUCTOR
ERSITY

R3

R7

= tree-structured n-D index [Guttman 1984] [
RIS R2 —

= |ndex value = bounding box

» Node's box covers its subtree
» we do not search exact object boundaries, but their bounding boxes

* — 2-step retrieval:
- bbox tree search, m M .

- then exact-match step

aq
0

R10 [R11 R12 R13 I @.

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Applications of Multidimensional Data

= (Geographic Information Systems (GIS)

» (Geospatial information; service standards by Open GeoSpatial Consortium (OGC)
» Vendors: ESRI, Intergraph, SmallWorld, ..., Oracle, ...; open-source: Grass, PostGIS, ...
 All classes of spatial queries and data are common

= Computer-Aided Design / Manufacturing

* spatial objects, ex: surface of airplane fuselage
« Range queries and spatial join queries are common

= Multimedia Databases

 Images, video, text, etc. stored and retrieved by content
* First converted to feature vector form; high dimensionality
« Nearest-neighbor queries are the most common

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Database Tuning

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Tuning Queries and Views

= [fa query runs slower than expected,
check if index needs to be re-built or statistics too old

= Sometimes, DBMS may not be executing the plan you had in mind.
Common areas of weakness:

 Selections involving null values; arithmetic or string expressions; OR conditions; ...
» Missing features (ex: index-only strategies), join methods, poor size estimation, ...

= Check plan used, adjust choice of indexes or rewrite query/view

* Avoid nested queries,
temporary relations,
complex conditions,
operations like DISTINCT and GROUP BY

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Index Selection Guidelines

= Understand workload:

» Queries vs. update
» What relations (sizes!), attributes, conditions, joins (selectivity!), ...?

= Attributes in WHERE clause are candidates for index keys

 Exact match condition suggests hash index, range query suggests tree index

» Consider multi-attribute search keys for several WHERE clause conditions
* Order of attributes important for range queries

= (Choose indexes that benefit as many queries as possible

 impact on updates: Indexes make queries faster, updates slower
 require disk space

= understand how DBMS evaluates queries & creates query evaluation plans

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

More Decisions to Make

= (Change conceptual schema = ER diagram?
guided by workload, in addition to redundancy issues

 Consider alternative normalized schemas? (many choices!)

* “undo” some decompositions, settle for a lower normal form, such as 3NF?
(denormalization)

 Horizontal partitioning, replication, views ...see manuals

= (Change logical schema = table definitions?

= [f made after a database is in use, called schema evolution

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Masking Conceptual Schema Changes

CREATE VIEW Contracts(cid, sid, jid, did, pid, qty, val)
AS
SELECT * FROM LargeContracts
UNION
SELECT * FROM SmallContracts

= Assumption: few large (high-budget) contracts — important to be fast

= Split Contracts — LargeContracts + SmallContracts, masked by view

 Regular users simply access Contracts

* high-profile users (boss) access LargeContracts for efficient execution

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

Key Performance Factors

Mark Fugate - My experience is that proper, or highest normal form normalization takes
care of the first half of the optimization process by reducing the size of the stored data and
reducing the numbers of operations required to maintain the data.

Query plans and query behaviours tell us how to properly index. Server tuning includes the
proper storage media and knowledge of file systems and media tuning. Understanding
yvour servers and knowing how to tune the OS, file systems, storage and kernel is all part of
being a DBA.

Further, keeping SQL out of the client code makes all of the above attainable. | force all
client applications in our shop to use stored procedures only, This gives me complete
control over indexes, table structures, and all queries ensuring that nothing obnoxious
enters the database,

= Like

[LinkedIn Database list]

Databases & Web Services — © P. Baumann

C>ONSTRUCTOR
UNIVERSITY

PS: A Moderately Complex Query

SELECT stadtbezirk, stadtteil, name, stadtteilchar, 'touche' AS entstehung, the_geom FROM
(SELECT foo3.stadtbezirk, foo3.stadtteil, foo3.name, foo3.stadtteilchar, foo3.the _geom FROM
(SELECT foo.gid, max(foo.laengste) AS laengste FROM
(SELECT a.qgid, b.stadtbezirk, b.stadtteil, b.name, b.stadtteilchar,

(ST_Length(ST_Intersection(a.the _geom, ST _Union(b.the _geom)))) AS laengste
FROM symdif a, dump b
GROUP BY a.gid, a.the _geom, b.stadtbezirk, b.stadtteil, b.name, b.stadtteilchar
HAVING ST_Touches(a.the_geom, ST_Union(b.the_geom))
ORDER BY a.gid) AS foo

GROUP BY foo.gid) AS foo2

(SELECT a.gid, b.stadtbezirk, b.stadtteil, b.name, b.stadtteilchar, a.the_geom AS the_geom,
(ST_Length(ST_Intersection(a.the_geom, ST _Union(b.the_geom)))) AS laengste
FROM symdif a, dump b
GROUP BY a.gid, a.the_geom, b.stadtbezirk, b.stadtteil, b.name, b.stadtteilchar
HAVING ST_Touches(a.the_geom, ST_Union(b.the_geom))) AS foo3
WHERE (foo2.gid = foo3.gid AND foo2.laengste = foo3.laengste)
GROUP BY foo2.gid, foo3.stadtbezirk, foo3.stadtteil, foo3.name, foo3.stadtteilchar,
foo3.laengste, foo2.laengste, foo3.the_geom) AS foo4

Databases & Web Services — © P. Baumann

