



<u>http://l-sis.org</u> → publications

http://en.wikipedia.org/wiki/Array\_DBMS



## Who Needs Arrays?

- Sensor, image, simulation, statistics data
  - Earth: Geodesy, geology, hydrology, oceanography, climate, earth system, ...
  - Space: optical / radio astronomy, cosmological simulation, planetary science, ...
  - Life: Pharma/chem, healthcare / bio research, bio statistics, genetics, ...
  - Engineering & research: Simulation & experimental data in automotive/shipbuilding/ aerospace industry, turbines, process industry, ...
  - **Management/Controlling:** Decision Support, OLAP, Data Warehousing, census, statistics in industry and public administration, ...
  - Multimedia: distance learning, prepress, ...
- "80% of all data have some spatial connotation" [C&P Hane, 1992]





# **CONCEPTUAL MODELLING**



## **Array Analytics**

Array Analytics :=

Efficient analysis on multi-dimensional arrays of a size several orders of magnitude above evaluation engine's main memory

- Essential data property: n-dimensional Cartesian neighborhood
  - Secondary: #dimensions, density, ...
- Operations: signal/image processing, Linear Algebra [M. Stonebraker], iterations





## **The Array Data Model**





# SYSTEMS

## **Early History of Array Databases**



## Array DBMSs Landscape Today

rapidly evolving ecosystem → necessarily incomplete

- Array Database Systems
  - query language, multi-user operation, storage management, access control
  - Ex: rasdaman, SciDB, EXTASCID, PostGIS Raster, Oracle GeoRaster
- Array tools: command-line tools & libraries, but no service
  - no query concept, but procedural API
  - Ex: OpenDataCube, OPeNDAP, Wendelin.core, TensorFlow, boost::geometry, xtensor, TileDB, ArrayStore, Ophidia
- Map/Reduce: Hadoop & Spark as cloud parallelization paradigm
  - Array layers on top of Hadoop, Spark
  - Ex: SciHadoop, Spatial Hadoop, GeoTrellis, MrGeo, SciSpark, ClimateSpark



## Array DBMSs Landscape Today

- Array Database Systems
- Array tools: command-line tools & libraries, but no service
- Map/Reduce: Hadoop & Spark as cloud parallelization paradigm

- <u>Technology overview</u>
  - 19 technologies compared
  - 4 benchmarked



## rasdaman

- "<u>ras</u>ter <u>da</u>ta <u>man</u>ager": SQL + n-D arrays
  - Scalable parallel "tile streaming" architecture
  - [VLDB 1994, VLDB 1997, SIGMOD 1998, VLDB 2003, ..., VLDB 2016]
- Blueprint for stds, in operational use





## The rasql Query Language

selection & subsetting

select c.data[ \*:\*, 100:200, \*:\*, 42 ]
from ClimateSimulations as c

- result processing
  select img.data \* (img.data.green > 130)
  from LandsatArchive as img
- search & aggregation



data format conversion

select encode( c.data[\*:\*,\*:\*,100,42], "png" )
from ClimateSimulations as c





rasdaman

DB

 $\rightarrow$ 





C>ONSTRUCTOR

## Linear Algebra Ops



## Histogram

select marray bucket in [0:255]
 values count\_cells( img = bucket )
from img



[SSDBM 2014]

# Arrays in SQL



rasdaman as blueprint

scene: row( band1: integer, ..., band7: integer ) mdarray [ 0:4999,0:4999] )



# ARCHITECTURE



## **Storage Management**



- Divergent access patterns for ingest and retrieval
- Server must mediate between access patterns

# Adaptive Partitioning ("Tiling")

- Any tiling [Furtado 1999]
  - Cast into strategies

 rasdaman storage layout language

Why irregular tiling?



insert into MyCollection
values ...
tiling
area of interest [0:20,0:40], [45:80,80:85]
tile size 1000000
index d\_index storage array compression zlib



## **Query Processing**

- Clear separation: set vs array trees
  - Arrays as 2nd order attributes
- Optimization
- Tile-based evaluation



select a.array < sum cells(</pre>

b.array + c.array )

a, b, c

from

C>ONSTRUCTOR

UNIVERSITY



## **Query Optimization**

select max\_cells( a + b )
from a, b



[Ritsch 2000]



# Parallel / Distributed Query Processing

## select

max((A.nir - A.red) / (A.nir + A.red))- max((B.nir - B.red) / (B.nir + B.red)) - max((C.nir - C.red) / (C.nir + C.red)) from A, B, C Dataset C 1 query  $\rightarrow$  1,000+ cloud nodes [ACM SIGMOD DANAC 2014] **Dataset A** Dataset B

C>ONSTRUCTOR

UNIVERSITY



# **APPLICATIONS**

## **Gene Expression Analysis**

http://urchin.spbcas.ru/Mooshka/ [Samsonova et al]

- Gene expression = reading out genes for reproduction
- Research goal: capture spatio-temporal expression patterns in Drosophila



select encode( scale( {1c,0c,0c}\*e[0,\*:\*,\*:\*]
 +{0c,1c,0c}\*e[1,\*:\*,\*:\*]
 +{0c,0c,1c}\*e[2,\*:\*,\*:\*], 0.2 ), "image/jpeg" )
from EmbryoImages as e
where oid(e)=193537

## **Human Brain Imaging**

- Research goal: structural-functional relations in human brain
- Experiments  $\rightarrow$  activity patterns (PET, fMRI)
  - Temperature, electrical, oxygen consumption, ...
  - → lots of computations → "activation maps"
- Example: "a parasagittal view of all scans containing critical Hippocampus activations, TIFF-coded."

select tiff( ht[ \$1, \*:\*, \*:\* ] )
from HeadTomograms as ht,
Hippocampus as mask
where count\_cells( ht > \$2 and mask )
 / count\_cells( mask )
 > \$3

\$1 = slicing position, \$2 = intensity threshold value, \$3 = confidence



C>ONSTRUCTOR

UNIVERSITY



# **Cosmological Simulation**

- Modelling domain: 4D
- Results: 3D/4D cutouts from universe
- Screenshots: AstroMD [Gheller, Rossi 2001]



## Early 3-D Service on rasdaman

## [Diedrich et al 2001]







- Agile Analytics on x/y/t + x/y/z/t Earth & Planetary datacubes
  - EU rasdaman
     + US NASA WorldWind
  - Rigorously standards as c/s APIs

earthserver.world

- Multi-Petabyte, worldwide
  - participation free & open





Co-funded by the European Union



# DEMO

# Edge Integration & Fusion

- Airborne drone
  - Demonstrated at NATO C-UAS Exercise
  - Relatime downlink
- Ship
  - Demonstrated on research vessel, Nuuk/Greenland
  - Realtime send & receive
- Nanosat
  - Demonstrated in orbit
  - Faster: avoid full download
  - QoS: Deliver answers, not pixels



## **AI + Datacube Integration**

- Seamless integration of ML in datacube queries
  - Ex: model-based crop classification, fully integrated

```
for $s2 in (Sentinel_2),
    $m in (CropModel)
return encode( nn.predict( $s2[...], $m ), "tiff" )
```

• Natural Language Processing (RSVQA, Begüm Demir)



C>ONSTRUCTOR

UNIVERSITY

 WCPS Chatbot for geo datacube analytics

## Say Hello to Datacubes

Let AI write & explain datacube analytics



## WRAP-UP



## Summary

- Arrays are core data structure next to sets, graphs, hierarchies
  - sensor, image, simulation, statistics datacubes
- Array DBMS for declarative queries on massive n-D arrays
  - rasdaman
- Issues:
  - enhancing distributed processing
  - iterative methods





## **Advertisement**

- Seeking datacube coders
  - Thesis see my group's <u>current list of thesis topics</u> Sabbatical in Spring 2025
  - Research projects
- Common requirement: strong coding skills
  - JavaScript / TypeScript / frameworks; Java; C++