

DATABASES

350101 General ICT 1 :: © Jacobs University, P. Baumann

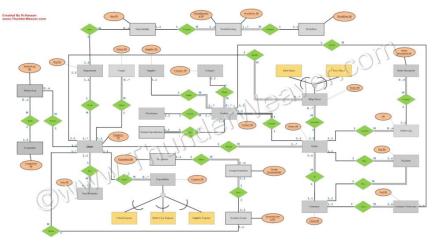
Objectives

- After this unit you will be able to explain the concepts of:
 - Database
 - database system
 - Database schema
 - Table/relation
 - Query (language)
 - SQL

The Task

- Manifold information, accessed by users in manifold (often unanticipated) ways
 - Standard task
 - Many variations
- Solution: individually configurable standard tool

…is this marketing speak???


[image: simplisafe.com]

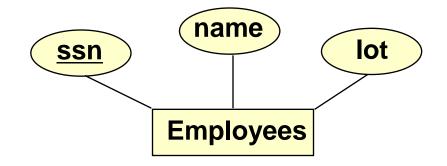
350101 General ICT 1 :: © Jacobs University, P. Baumann

Describing Database Contents

- "A database is an organized collection of data" [Wikipedia]
- → need to describe what database will contain, on "high level"
 - No implementation details like table schemas (later) or file structures (not here)
- canonical: Entity-Relationship Model (Peter Chen, 1976)

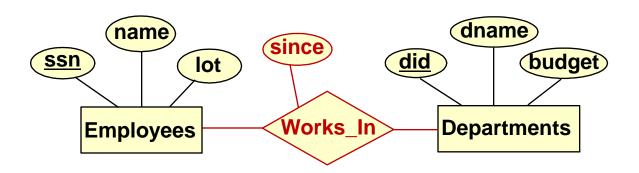
Alternative: UML (Unified Modelling Language)

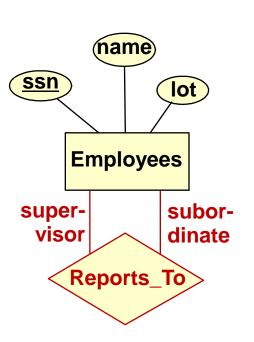
350101 General ICT 1 :: © Jacobs University, P. Baumann



Entities

Entity set: collection of similar entities


- same set of attributes
 - Until we consider ISA hierarchies
- <u>key</u> = unique identifier
- attribute has domain = data type



Relationships

- Relationship connects two or more entities
 - Ex: Attishoo works_in Pharmacy_Department
- Relationship Set: Collection of similar relationships
 - each relationship in $R \in E1 \times ... \times En$ involves entities $e1 \in E1$, ..., $en \in En$
 - Roles to differentiate different "legs"

contractid

Contract_Emps

name

Employees

ÍSA

sid

hours worked

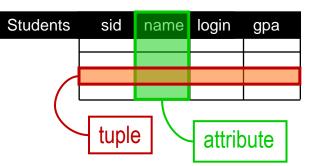
Hourly_Emps

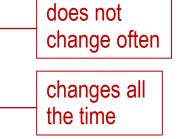
lot

ISA (`is a') Hierarchies

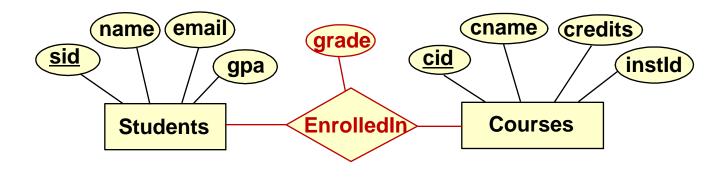
- A ISA B :<=> every A entity is also a B entity ("A inherits from B")
 - A entities have B attributes, plus maybe more
 - A is called subclass, B superclass

 Overlap constraints: Can Joe be an Hourly_Emps as well as a Contract_Emps entity? (Allowed/disallowed)


hourly wages


 Covering constraints: Does every Employees entity also have to be an Hourly_Emps or a Contract_Emps entity? (Yes/no)

Relational Database: Definitions


- Technically: Relation made up of 2 parts:
 - Schema: name of relation, plus name & type of each column
 - Ex: Students(sid: integer, name: string, login: string, gpa: real)
 - Table: data arranged in rows & columns
- Database = a set of tables
- Mathematically, table = relation:
 - Let A1, ..., An (n>0) be value sets
 - relation $R \subseteq A1 \times ... \times An = \{ (a1,...,an) \mid a1 \in A1, ..., an \in An \}$
- Schema maintained by database administrator
 - Plus all other housekeeping work

Ex: University Miniworld

	dents: name	email	gpa
42 43 44	—	n.eo t.rinity c.ypher	

Enr	EnrolledIn:				
sic	l cid	grade			
42	142	1.3			
43	142	2.0			
44	142	2.0			
42	143	1.0			
44	143	2.0			
43	144	1.7			

Courses:				
cname	credits	instId		
AlgDS	5	242		
DBWA	5	243		
CGVis	5	244		
	cname AlgDS DBWA	cname credits AlgDS 5 DBWA 5		

SQL, Structured English Query Language

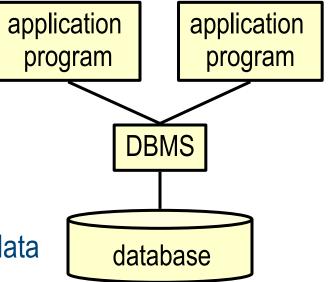
"students with GPA better than 3.0":
 SELECT *

FROMStudentsWHEREgpa < 3.0</td>

sid	name	email	gpa	
42	Neo	n.eo	1.7	
43	Trinity	t.rinity	2.3	
лл	Cumbon	a unhan	2 0	
	Cibuer	C. Maner	5.0	

"names & emails of..." :

SELECTname, emailFROMStudentsWHEREgpa < 3.0</td>


5	id	name	email	gpa
4	2	Neo	n.eo	1.7
4	B	Trinity	t.rinity	2.3
-44	4	Cypher	c.ypher	3.0

SQL query accesses tables, query returns a table

Some Vocabulary

- Applications request data, update data, etc.
- Database [Management] System = DBMS
 = software to store and manage databases
 - ...and no one else!
- Database = DB = an integrated collection of data
 - Stored on disk
 - With a well-described structure = schema

Importance of Schema

- data are structured (not simply text) + schema describes it
- \rightarrow more complex evaluations are possible
 - Ex: How many homeworks has each student done?
- Access restrictions can be imposed on rows & columns
- also used internally to speed up query processing

DBMS Technology

- Vendors:
 - Leading: Oracle, IBM, Microsoft
 - Further: Teradata, Sybase, SAP HANA, ...
- Open source:
 - PostgreSQL, MySQL/MariaDB, ...and many more
- Recently: NoSQL databases
 - NotOnlySQL

Summary

- Database (system) for managing data in a structured way
 - DB knows about its structure and how to maintain integrity
- High-level visual information modelling: Entity-Relationship Model
- Prevailing technology: Relational Databases
 - Relations = tables
 - Flexible queries on tables \rightarrow SQL
- Main advantages of DBMSs over flat files & self-built systems:
 - Flexibility
 - Scalability
 - Information integration