
350101 General ICT 1 :: © Jacobs University, P. Baumann

MORE ABOUT DATABASES

350101 General ICT 1 :: © Jacobs University, P. Baumann

Objectives

 After this unit you will be able to explain the concepts of:

• Transaction, scheduling conflicts, ACID

• How indexes speed up query procecessing

350101 General ICT 1 :: © Jacobs University, P. Baumann

Transactions

 Queries by multiple users, can arrive simultaneously

 DBMS must handle concurrent execution of queries

• high-throughput systems with 1,000s of TAs / sec

• Disk access frequent & slow keep CPU humming

 Transaction (TA) = sequence of queries forming a unit

• Flight booking; Ebay buy; …

 OLTP = Online Transaction Processing

350101 General ICT 1 :: © Jacobs University, P. Baumann

Transactions: The Challenge

 Every user can safely think of only its own TA, all others unknown

 Concurrency achieved by DBMS, interleaving reads/writes of active TAs

 TA must leave DB in consistent state

• Ex: primary key & unique attributes; foreign keys…plus much more

 What can go wrong?

• TAs conflict

• TAs aborted

• Server crashes

350101 General ICT 1 :: © Jacobs University, P. Baumann

Transaction Syntax in SQL

 START TRANSACTION start TA

 COMMIT end TA successfully

 ROLLBACK abort TA (undo any changes)

 If user omits/forgets: 1 query = 1 TA

350101 General ICT 1 :: © Jacobs University, P. Baumann

ACID

 TA concept grounding on four basic properties:

 Atomic

• all TA actions will be completed, or nothing

 Consistent

• after commit/abort, data satisfy all integrity constraints

 Isolation

• any changes are invisible to other TAs until commit

 Durable

• nothing lost in future; failures occurring after commit cause no loss of data

350101 General ICT 1 :: © Jacobs University, P. Baumann

Good Transaction Behavior

 Ex: Bank account services

• T1 transfers $100 from B‟s account to A‟s account

• T2 credits both accounts with a 6% interest payment

 no guarantee T1 will execute before T2 or vice-versa when submitted

together; that‟s ok

 However, net effect must be equivalent to TAs running serially in some

order

T1: BEGIN A=A-100, B=B+100 END
T2: BEGIN A=1.06*A, B=1.06*B END

350101 General ICT 1 :: © Jacobs University, P. Baumann

Anatomy of Conflicts

 Consider a possible interleaving (schedule):

 This is OK. But what about:

 Problem: Reading uncommitted data (R/W conflicts, “dirty reads”)

 …plus a few more such bad situations

T1: A=A-100, B=B+100
T2: A=1.06*A, B=1.06*B

T1: A=A-100, B=B+100
T2: A=1.06*A, B=1.06*B

350101 General ICT 1 :: © Jacobs University, P. Baumann

Lock-Based Concurrency Control

 DBMS schedules reads & writes in a way preserving serializability =

consistent execution

• Like traffic lights

 Support mechanism: lock table, for each tuple + activity (r,w)

• TA must apply for S (shared) lock before reading, X (exclusive) lock before writing

 Locking protocols

• two-phase locking (strict, non-strict, conservative, …)

• Multi-version based

• Optimistic concurrency control

| S X
--+-----
S | + -
X | - -

350101 General ICT 1 :: © Jacobs University, P. Baumann

Indexing Data

 Problem: How to find specific tuples in a table?

 Alt 1: Brute force: table stored in file scan file sequentially

• 1 table with N tuples N/2 search time on average

• 2 tables with N, M tuples N*M effort

 Alt 2: prepare small lookup table, called index

• Not full tuple stored, only search criterion + path to data item

• Extra magic for fast search

 Prominent: B-Tree index, Hash index

350101 General ICT 1 :: © Jacobs University, P. Baumann

How Does a Tree Index Work?

 Index on name attribute in Cocktails table, helpful for eg this query:

Ange | Bi | Bl Caipiri | Caipiro | Ch Co | Cu | D M | P | T

A - B | Ca - Ch | Co - D | M - T

Coconut Kiss

Cuba Libre

Daiquiri

Mojito

Planter„s Punch

Tequila SunriseChagalls

Caipirowska

Caipirinha

Bloody Mary

Bird of Heaven

Angel„s Smile

SELECT * FROM Cocktails WHERE name like „Cai%“

Cocktails.name

350101 General ICT 1 :: © Jacobs University, P. Baumann

How Does a Tree Index Work?

 Need fast access path to more attributes? Create further indexes!

 But think of update frequency

Coconut Kiss

Cuba Libre

Daiquiri

Mojito

Planter„s Punch

Tequila SunriseChagalls

Caipirowska

Caipirinha

Bloody Mary

Bird of Heaven

Angel„s Smile

Cocktails.name
Cocktails.ingredients

B-Tree
(Bayer, McCreigh)

350101 General ICT 1 :: © Jacobs University, P. Baumann

Searching with B-Trees

 Point query = retrieve by exact value (eg, grade)

 Range query = retrieve all within a range (eg, passing grades)

2* 3*

Root

17

30

14* 16* 33* 34* 38* 39*

135

7*5* 8* 22* 24*

27

27* 29*

Entries < 17 Entries => 17

350101 General ICT 1 :: © Jacobs University, P. Baumann

B-Tree

 B-Tree = n-ary tree optimized for black storage

• Block = n discriminators + (n+1) pointers to subtrees or leafs

• leaf chains for fast range queries

 B-tree block:

Index
pages

Leaf
pages

[Bayer & McCreight, 1972]

Fill factor

P0 K1 P1 K2 P2 Km Pm

350101 General ICT 1 :: © Jacobs University, P. Baumann

Why is This Fast?

 O(logF N) where F = fan-out, N = # leaf pages

 Typical fan-out: 133

 Typical capacities:

• Height 3: 1333 = 2,352,637 records

• Height 4: 1334 = 312,900,700 records

 Can often hold top levels in buffer pool:

• Level 1 = 1 page = 8 Kbytes

• Level 2 = 133 pages = 1 Mbyte

• Level 3 = 17,689 pages = 133 Mbytes

350101 General ICT 1 :: © Jacobs University, P. Baumann

Summary

 Picked 2 distinct aspects for looking inside a DBMS

 Concurrency control

• Transactions, scheduled via locks

• ACID

 Indexing

• Access paths to data, speeding up queries

