
350102 General ICT 2 (P. Baumann)

350102
GENERAL INFORMATION &
COMMUNICATION TECHNOLOGY II
(GENICT)

- DESCRIBING SOFTWARE -

Instructor: Peter Baumann

email: p.baumann@jacobs-university.de

tel: -3178

office: room 88, Research 1

2350102 General ICT 2 (P. Baumann)

The Software Life Cycle

Requirements Engineering

 Design

 Coding

Configuration, Release, & Dependency Management

 Verification & Testing

 Deployment, Maintenance

350102 General ICT 2 (P. Baumann)

Excellent work! But maybe we

should get a little more detailed here...?

"Plan? Who needs a plan?"

Introduction to UML

Instructor: Peter Baumann

email: p.baumann@jacobs-university.de

tel: -3178

office: room 88, Research 1

based on:

Introduction to the Unified Modeling Language, Chapter 2

Terry Quatrani, UML Evangelist, IBM

4350102 General ICT 2 (P. Baumann)

What is UML?

 What is UML?

• "The UML (Unified Modeling Language)

is the [OMG] standard language

for specifying, visualizing, constructing, and

documenting all the artifacts of a software system.”

• Synthesis of notations by Grady Booch,

Jim Rumbaugh, Ivar Jacobson, and many others

• Rational, Objectory, et al, ...now IBM

 diagram perspectives

• Conceptual, specification, implementation

5350102 General ICT 2 (P. Baumann)

Diagram Types Overview

 Main diagram types, according to „80/20 rule“:

• Use Case Diagram (functional)

• Activity / Action Diagram (behavioral)

• Class Diagram (structural)

• State Diagram (behavioral)

• Sequence Diagram (behavioral)

 Further, not addressed here:

• Object Diagram (structural), Collaboration Diagram (structural), Package Diagram

(structural), Deployment Diagram (structural)

• Interaction Diagram ::= Collaboration Diagram | Sequence Diagram

6350102 General ICT 2 (P. Baumann)

Use Case Diagrams

 use case = chunk of functionality, not a software module

• Should contain a verb in its name

 actor = someone or some thing interacting

with system under development

• Aka role in scenario

 Visualize relationships

between actors and

use cases

 capture high-level alternate

scenarios, get customer agreement (early !)

7350102 General ICT 2 (P. Baumann)

Sequence Diagrams

 Displays object interactions arranged in a time sequence

 Can be from user„s perspective!

• good for: showing what‟s going on
and driving out requirements when
interacting with customers

 How many SDs? Rule of thumb:

• for every basic flow of every use case

• for high-level, risky scenarios

 Useful for designer and customer to answer the question:

„what objects and interactions will I need to accomplish the functionality

specified by the flow of events?“

8350102 General ICT 2 (P. Baumann)

Activity Diagrams

 Represents the overall flow of control

 Graphical workflow of activities and actions

• like flow chart, but user-perceived actions (business model)

Synchronisation bar

(fork/join)

Transition

guard

Swimlanes

9350102 General ICT 2 (P. Baumann)

Class Diagrams

 Class = collection of objects with common structure,

common behavior, common relationships, and common semantics

 Displayed as box with up to 3 compartments:

• Name

• List of attributes (aka state variables)

• List of operations

 Class modeling elements include:

• Classes with structure + behavior

• Relationships

• Multiplicity and navigation indicators

• Role names

10350102 General ICT 2 (P. Baumann)

Class Diagrams: (Instance) Relships

 Models that two objects can “talk”

 Association – bi-directional connection between classes

• “I can send you a message because if I‟m associated with you, I know you‟re there.”

 Aggregation – stronger form: „has a“

• R. between a whole and its parts

 Dependency – weaker form

• “need your services,
but I don‟t know that you exist.”

 Quatrani: „typically first make

everything an association,

lateron refine“

how

described?

11350102 General ICT 2 (P. Baumann)

Class Diagrams: Multiplicities, Navig.

 Multiplicity numbers & intervals denote number of instances

that can/must participate in relationship instance

• For both ends

of relationship edge

• 0..1 (may have one)

• 1 (must have one)

• 0..* or * (may have many)

• 1..* (has at least one)

 Arrow head to denote:

traversable only this

direction

12350102 General ICT 2 (P. Baumann)

Class Diagrams: Inheritance

 Inheritance = relation between subclass and superclass

 Subclass instances have

• all properties specified

in superclass

• plus the specific ones

defined with the subclass

 Also called „is-a“

13350102 General ICT 2 (P. Baumann)

Ready? Let‘s go!

 Trike

 Different types of vehicles

 Family

[motorbike-search-engine.co.uk]

14350102 General ICT 2 (P. Baumann)

Activity vs Sequence Diagrams?

 Activity diagram:

 Granularity: user-perceived actions

 How do actors interact?

 Sequence diagram:

 Granularity: actors + system components

 How do components interact?

15350102 General ICT 2 (P. Baumann)

Warehouse

Management

[interopporesearch.blogspot.com]

17350102 General ICT 2 (P. Baumann)

Ready? Let‘s go!

 Customer / waiter / chef

18350102 General ICT 2 (P. Baumann)

UML python

class Box:

def __init__(self,w,h)

self.width = w

self.height = h

def area(self)

return self.width

* self.height

class Box

Box

- width :float

- height :float

+ init(float, float) :void

+ area() :float

19350102 General ICT 2 (P. Baumann)

Particularities of python

 Properties are simply used, without declaration

 Inheritance indicated after class name

• Ex: class B(A) means „B in herits from A“

 Private items start with „__“ (2x underscore)

• Ex: __myPrivateValue

 Builtin methods for object maintenance

• Ex: __new__(), __del__(), __repr__(), plus many more

• Other languages, such as C++, offer default constructors, copy constructors,

destructors

20350102 General ICT 2 (P. Baumann)

 UML industry standard

for visually describing all aspects during software life cycle

• Use Case Diagram, Activity Diagram , Sequence Diagram, Class Diagram, State Diagram, ...

 We had but a primer – UML spec has ~1,000 pages...

 More work in the beginning (= before coding starts),

but will pay off in

• Better design (less flaws & more consistency)

• Fewer costly surprises late at integration / customer testing time

• Better plannable

• Higher customer satisfaction, better career

Wrap-Up

