350102 °J
GENERAL INFORMATION &
COMMUNICATION TECHNOLOGY I
(GENICT) [m.m-,mmshmj

ou Trught, see i ol looked al 2
mﬁ;m%wimitmdm

! 1111

- SW ENGINEERING R B

L L F

PROCESS MODELS - @\

.

Instructor: Peter Baumann »

email: p.baumann@jacobs-university.de
tel: -3178

office; room 88, Research 1

Project Sucess/Failure Rate N J scoss

UNIVERSITY

[CHAOS Report, Standish Group]

1994-2004 Average Percent of Cost Overrun

b ol Challenged
150% S 53%
100% ™
50% ey~ 56
0% 1994 1996 1998 2000 2002 2004
IAvora ge 180% 142% 69% 45% 43% 56% S u c c E E d E d

29%

Year: 2004, Source: CHAOSDatabase: CHADS surveys conducted from 1994 to Fal 2004. Resuls: shows averge percent of cost
above ther ongnalestirate.

1994-2004 Average Percent of Time Overrun

200% 11619, Failed B o
1500 |8l 131% 18% "
100% 79% | 3% | 82% _S‘ﬁ%

50% -]

0%

1994 | 1996 | 1998 | 2000 | 2002 | 2004
[Average| 164% | 131% | 79% | 63% | 82% | 84%

Year: 2004, Source: CHAOS Database: CHAOS surveys conducted from 1994 to Fall 2004, Resuts: shows averge

qercent of time above their aﬁu‘d estimate. |

350102 General ICT 2 (P. Baumann)

Top 10 Project Failure Factors: Lack ofs_)) ..o

UNIVERSITY

1. Executive support (18%)

2. User involvement (16%)

3. Experienced project manager (14%)

4. Clear business objectives (12%)

5. Minimized scope (10%)

6. Standard software infrastructure (8%)

7. Firm basic requirements (6%)

8. Formal methodology (6%)

9. Reliable estimates (5%)

10.Other criteria (5%) [CHAOS Report,

Standish Group International, Inc.]

350102 General ICT 2 (P. Baumann) 3

Where Time Really Is Spent In Practice x) .co:

UNIVERSITY

design

i implementation
0k o 15%
documentation -
0% g el Testing
Strugglingto .7
cauroments N
~ difficulties
30% 30%

Source: unknown

350102 General ICT 2 (P. Baumann) 4

Software Project Management (PM) ~ x_J) .o

UNIVERSITY

= Project Management = activities to ensure that result is delivered

e ontime
e on schedule

* in accordance with requirements of customer and vendor (!)

= Core: planning & monitoring

= needed because software development always subject to

« vendor budget & schedule constraints

 changes

350102 General ICT 2 (P. Baumann) 5

What Fills a PM's Day \J o

UNIVERSITY

= Proposal writing

= Customer (and sales, and marketing) communication

- Proj =Probably most time-consuming activity
= Project costing =Continuous, regularly revisited

0 Projews =\/arious types of plan

= Personnel selection and evaluation

= Report writing and presentations

350102 General ICT 2 (P. Baumann) 6

The Project Plan \J o

UNIVERSITY

= Project plan sets out: = Project plan structure:
 The resources available to the project * Introduction
...who?

 Project organisation

e The work breakdown * Risk analysis

...what? % sof
 Hardware & software resource
» A schedule for the work requirements
...when?

* Work breakdown
 Project schedule

 Monitoring & reporting mechanisms

350102 General ICT 2 (P. Baumann) 7

Types of Project Plan X o

UNIVERSITY
Plan Description
Quality plan Describes the quality procedures and standards that will be
used 1n a project. See Chapter 27.
Validation plan escribes the approach, resources and schedule used for
Vs ’re m validation. See Chapter 22
Configuration Describes the configuration management procedwres and
management plan structures to be used. See Chapter 29.
Maintenance plan Predicts the mamtenance requirements of the system,
maintenance costs and etfort requured. See Chapter 21.
Statf development Describes how the skills and experience of the project team

plan. members will be developed. See Chapter 25.

‘ cf. Sommerville Chapters!

Project Planning Process vJ o

UNIVERSITY

Establish project constraints
Make initial assessments of the project parameters
Define project milestones and deliverables
Draw up project schedule
while project has not been completed or cancelled
loop
Initiate activities according to schedule
Wait (for a while)
Review project progress
Revise estimates of project parameters
Update the project schedule
Re-negotiate project constraints and deliverables
if (problems arise) then
Initiate technical review and possible revision
end if
end loop

350102 General ICT 2 (P. Baumann) 9

Tabular Task Durations & Dependenciesj -

UNIVERSITY

Activity Duration (days) Dependencies

T1 8

T2 15

T3 15 T1 (M1)
T4 10

15 10 T2, T4 (M2)
T6 5 T1, T2 (M3)
T7 20 T1(M1)
T8 25 T4 (M5)
T9 15 T3, T6 (M4)
T10 15 T5, T7 (M7)
T11 7 T9 (M6)
T12 10 T11 (M8)

350102 General ICT 2 (P. Baumann)

Activity Network

14/7 /03 15 days

T3
8 days
T1 5 days
25/7/03
4/7103 T6
15 days 20 days
T7
T2
25/7/03
10 days 10 da/s
: M2
18/7/03

25 days
T8

4/8/03

11/8/03

15 days

T9

N

| \ , JACOBS
UNIVERSITY

25/8/03

15 dgs

7 dgys

T11

5/9/03

T10

Finish

350102 General ICT 2 (P. Baumann)

19/9/03

Potential Scheduling Problems \J o

UNIVERSITY

= Estimating difficulty of problems (hence, cost
= Productivity !~ #people working on a task

= Adding people to a late project makes it later

e communication overheads!

THERE ARE 300 OF YOU,
S0 T LJANT YOU TO
FINISH BY FIVE O'CLOCK
AMD CLEAN OUT YOUR
DESKS. YOURE ALL
FIRED.

I HIRED ALL OF YOU
BECAUSE THE PROJECT
LWJILL TAKE 300 MAN

- The unexpected DAYS TO COMPLETE.
always happens!

» Always allow contingency
in planning

IF IT TAKES MORE
THAN ONE MEETING
TO MANAGE A PROTECT,
I LOSE INTEREST.

Y307 3000 Scott Adames, Inc./Dist. by UFS, Inc.

|
www.dilbert.com scottadamas@aclcom

© Scott Adams, Inc./Dist. by UFS, Inc.

...as a partial little remedy, let's seek (tool) support

350102 General ICT 2 (P. Baumann)

fé Microsoft Project - Trigger_CTT_FNAL_v3.mpp

{ﬂj File Edt View Insert Format Tools Project Window Help

=lolx|

51

DERaRY iR o aleskinmc @ oo

e T
124 1.2.2 [# Level 1 Calorimeter Track Matching
180 [1.2.3 =l Level 1 Tracking
(a1 | 1.2.31 Prototype L1 Central Track Trigger Algor
182 1.2.3.2 [# Develop Target CTT Algorithm
185 | 1.23.3 Target L1 Central Track Trigger Algorithr
185 [1.2.3.4 [# Develop Test Procedures
189 1.23.5 [*] DFEA Preproduction |
201 1236 [DFEA Preproduction Il
(217 [1.23.7 [DFEA Production
(239 [1.23.8 I=] DFEA Backplane (BP)
240 | 12381 hardware spec
T EA)
Work package) ~
249 11,2388 proguction + vendor checkout
Ditectors. 246 [1.2.3.8.7 first BP received
Milester.. | PYTARPEYEY FNAL checkout
_ﬁ‘iﬁ 2388 crate assembly + bench test
nanlinaggg test with CC

311
B.12 delivered to Boston
[=] DFEA Crate Controller (CC)

Subtask

w1 1.2.0.31

254 112392

2584*1 2384
257 112385

258 12396

ematic + layout; order long leadtime
PCB production + vendor testing

checkout
optical Serial Command Link Receiver pn
test software/firmware
hench test
CC ready
I=I optical Download and Control Link (DCL)
iterface specs

Milestaone
Gantt 2

Progress

63 1.2.3.10

D d hardware specs
e p e n e n Cy hardware procurement
400 {1.2.31U.9 software: Linux driver
269 [1.23106 | software: EPICS driver + integration
(210 (123107 software: dfe_ware integration
271 1123108 benchtest PC - CC
P
(273 11.2.9 L1 Trigger Upgrade Production and Testing Co
274 1.2 Level 2 Beta Processor
315 [1.25 [# Silicon Track Trigger Upgrade

ano

L2 Trigger Upgrade Preduction and Testing Co
Trigger Simulation

Milestone -

590 d
604d?
0w
154d
0w
140d
184d
80d
225d
183d?
2d
14d
1d?

4 mons
1d?
3 mons
1d?
2w
2w
2w
2w

0w
305d

0w
827d
520d

leariar,

Activity Timeline (aka Gantt Chart)

Thu 81102
Thu 117102
Thu 11/7/02
Thu 11/7/02

Wed 6/25/03
Thu 6/26/03
Thu 6/26/03
Mon 2/2/04

Mon 52404

Fri 112104

Wed 111404

Tue 1/27104

Mon 2/16/04

Fri1i2i04

Mon 4/26/04

Tue 4127104

Thu 7/22/04

Fri 7123104
Fri 8/6104
Fri 8120004
Fri 93104

Mon 9/20/04

Mon 121103
hon 121103
Wed 1/14/04

Thu 4/5/104
Thu 56104

Mon 3/1./04
Tue 622104
Mon 7419104
Mon 8:2/04

Thu 31104
Thu 4/8/04
Fri 4/3/04
Thu 4/804
Thu 5/20/04
Mon 715
Mopf7 15104

u 5/12/05
Mon 12/1/03
Tue 1/21/03
Mon 2/28/05
Thu 11101
Mon 2/3/03

Tue 12114104
Wed 4120105
Thu 11/7/82
Wed 6/25/03
Wed 6/25/03
Fri 1/23/04
Thu 3/25/04
Fri 52104
Wed 4/20/05
Mon 9/20/04
Thu 212104
Fri 2113104
Mon 2/16/04
Fri 4123104
Mon 426/04
Wed 7721104
Thu 7/22/04
Thu 8/5/04
Thu 8119104
Thu 972104
Fri 917104
Mon 9/20/04
Wed 2/16/05
Tue 1/6/04
Wed 4/7/04

Thu 71104
Fri 716104
Fri 4/23104

ed 2116105
Fri 7130104
Mon 8/2/04
Mon 9/27/04
Wed 311004
Wed 4/7104
Thu 4/8/64
Thu 518104
Thi
Fri 813104
Mon 8727104
Fri 716104

Thu 511205
Mon 2/28/05
Mon 1/31/05
Mon 2/28/85

‘Wed 3/9/05

Mon 3/7/05

2205F 2285F,2195F
191,185,197
187,188

242

244
245
246
247
248
249
250
251

254

2nd Quatter 3rd Quarter

Jan [Feb [Mar | Apr [May [Jun

v

Dec

v

Henry L. Gantt (1861-1919

m | Jamiesbn Olsen[20%]
[, Jamieson Olsen[20%]

} 216

Jamieson Olsen[20%]

InKind[14,000]
722
Jamieson Olsen[20%]
ieson Olsen[20%]
mieson Olsen[20%
Jamieson Olsen|
& 920

g 2
3
@

2 ~
amieson Olsén

255

257
281

lamieson Qlsen[20%]

S
InKind[7,500]
Jami Olsen[20%)]

260,261

262
249

265,270
266,268
267
27
\26955+1.5 mons
270S8+1 .5 mons

261

Isen[5%LInKind[625]
0|sen|?n%]

Jamieson Olsen[20%]
amieson; Olsen[50%]

ind[1,000]

: age or equ.[30%]
: Yurii Maravin replacement[50%]
A Jamieson Olsen[20%]

@ 512

*
S

e I

d4th &
Ju

EXTE ARG (NOME FSCRET I OVRE =z

-

Wrap-Up: Project Management \J o

UNIVERSITY

Good project management essential for project success

* intangible nature of software causes problems for management

Managers have diverse roles
but most significant activities are planning, estimating and scheduling

* iterative processes which continue throughout the course of a project

Projects are broken into tasks with deliverables at predefined milestones

 Gantt chart, PERT chart for project activities, their durations and staffing

Risk management for

* identifying risks which may affect the project

 planning — risks do not develop into major threats

350102 General ICT 2 (P. Baumann)

Commonalities & Differences \7 o

= SW & other engineering projects share
commonalities:

« Many activities not peculiar to
software management
N
many techniques of engineering PM
equally applicable to sw PM

 Technically complex engineering
systems tend to suffer from same
problems as software systems:
collaboration; deadlines; customers;

350102 General ICT 2 (P. Baumann)

UNIVERSITY

= On the other hand, software projects are
different from projects in other disciplines:

product is intangible
product is uniquely flexible

Software engineering not recognized
as an engineering discipline with the
sane status as mechanical, electrical
engineering, etc.

software development process
not standardised (well, not
completely)

Many software projects
'one-off' projects

N , JACOBS
UNIVERSITY

Software Process Models

Sommerville, Chapters 4, 17

Pressman
Everyone knew

exactly what
had to be done
until someone

Instructor: Peter Baumann wrote it down!

email: p.baumann@jacobs-university.de
tel: -3178
office: room 88, Research 1

350102 General ICT 2 (P. Baumann)

The Software Process \7 o

UNIVERSITY

= Software process =
a structured set of activities required to develop a software system
 Specification
 Design
« Validation

» Evolution.

= software process model =
abstract representation of a process

* description of a process from some particular perspective

350102 General ICT 2 (P. Baumann)

Software Crisis \7 o

UNIVERSITY

= early days of CS: difficulty of writing useful & efficient computer programs in
the required time

= Reason: rapid increases in computer power, complexity of problems that
could be tackled

« existing methods neither sufficient nor up to the mark

= [ssues:

* Projects running over-budget, over-time
« Software inefficient, of low quality, not meeting requirements

 Projects unmanageable, code difficult to maintain

e Software was never delivered

When was that?

350102 General ICT 2 (P. Baumann) 18

Structured Programming: Loops v) o

UNIVERSITY

Simple
loop

Nested
Loops

|

Concatenated
Loops Unstructured

Loops

350102 General ICT 2 (P. Baumann)

So What Can Go Wrong? \J o

UNIVERSITY

= Viking Venus spacecraft: tiny bug in FORTRAN code

» Correct: DO 201=1,100
» program code: DO 20 1= 1.100

350102 General ICT 2 (P. Baumann)

For Geeks: Bad Stuff Goes in C++, Toow_J) o

UNIVERSITY

for (count = 0, *templateList = myClass_New (templateCount, char *);
*templateList
&& count < templateCount
&& ((*templateList)[count] = aux_Duplicate (templates[count]));
count++);

= documenting this takes longer than writing a clear version of the code.
= no error handling at all!

= How to do better?

350102 General ICT 2 (P. Baumann)

Software Crisis: Response \J o

UNIVERSITY

Structured programming
 Functions, blocks...all is better than goto!

 Avoid spaghetti code
« Later: object-oriented programming

Defensive programming

 Better check twice
— in particular across interfaces!

e Runtime checks, safer PLs

, Image: Wikipedia
Academia: correctness proofs _ check it out!

Systematic testing

350102 General ICT 2 (P. Baumann)

Classical Software Process Models ~ v_J) .o

UNIVERSITY

Waterfall model

» Separate and distinct phases of specification & development

Evolutionary development

 Specification, development and validation are interleaved

Component-based software engineering

» The system is assembled from existing components

...plus many variants

* e.g. formal development:
waterfall-like process, but using formal specification refined through several stages to
an implementable design

350102 General ICT 2 (P. Baumann)

Roadmap \J o

UNIVERSITY

= SE process management
 Waterfall model

 Incremental methods

* Agile/XP methods

* |terative / spiral methods (eg, RUP)
 Evolutionary methods

* V-Model

= CMMI Note:

deviates somewhat from
Sommerville's classification,
relies on Kal Toth (see later)

350102 General ICT 2 (P. Baumann)

Roadmap \J o

UNIVERSITY

= SE process management
 Waterfall model

 Incremental methods

* Agile/XP methods

* |terative / spiral methods (eg, RUP)
 Evolutionary methods

* V-Model

= CMMI

350102 General ICT 2 (P. Baumann)

Waterfall Model \J o

UNIVERSITY
requirements
definition
system and
software design
iImplementation and
unit testing

integration and
system testing

operation and
maintenance

350102 General ICT 2 (P. Baumann)

Waterfall Model: Appraisal \J o

UNIVERSITY

= Partitioning into distinct stages
— difficult to accommodate change after process is underway
— Inflexible Py

and

system an
software design

* One phase has to be complete before moving onto next phase ot

unit testing
—_—

= Few business systems have stable requirements

e changing customer requirements
e Increased domain understanding

 Unforeseen technical difficulties

= only appropriate when requirements well-understood and fairly stable

= mostly used for large systems engineering projects (?)
where system is developed at several sites

350102 General ICT 2 (P. Baumann)

Roadmap \J o

UNIVERSITY

= SE process management
 Waterfall model

* |Incremental methods
* Agile/XP methods

 Evolutionary methods

= CMMI

350102 General ICT 2 (P. Baumann)

JACOBS
UNIVERSITY

The Incremental Model ‘7

»

increment #n

communication I:I
increment #1 rews |

design
communication _Ig.h
__I | ol .
reqs . M delivery of

design K integration § jncrement #n
: operation
| . |
impl | delivery of

integration I increment #1
operation I

Functionality & features

v

Project calendar time

350102 General ICT 2 (P. Baumann)

Incremental Delivery \J o

UNIVERSITY

= development & delivery broken down into increments

* each increment delivering part of the required functionality

= User requirements are prioritised

* highest priority requirements included in early increments

= Once development of increment is started, requirements are frozen

* requirements for later increments can continue to evolve

350102 General ICT 2 (P. Baumann)

Variant: The RAD Model \J o

UNIVERSITY

team #n
communication _
;—l / design I]
regs impl
{
L J
team #1 integration
delivery
design I] feedback
impl integration
What does RAL
60 — 90 days : stand for?

350102 General ICT 2 (P. Baumann)

Incremental Development: Appraisal \7 IncoBs

UNIVERSITY

= (Customer value delivered with each increment

» system functionality is available earlier

= Early increments act as a prototype

* help elicit requirements for later increments

= |ower risk of overall project failure

= Highest priority system services tend to receive most testing
. Why?

increment #n
communication

Functionality & features

lesign h '.
".mil_* defivery of
integration o - jnorement #1
operation |

Project calendar time

350102 General ICT 2 (P. Baumann)

Roadmap \J o

UNIVERSITY

= SE process management
 Waterfall model

* |Incremental methods
* Agile/XP methods

 Evolutionary methods

= CMMI

THAT MEANS NO MORE

?{ﬁgﬁﬁgﬁ&% PLANNING AND NOMORE |3| 1o oLap THAT
CALLED AGILE DOCUMENTATION. JUST 3] yriac'n WAS YOUR
PROGRAMMING. START WRITING CODE Name ™ TRAINING.

AND COMPLAINING.

B30T £ 2007 Scott Adama, Inc./Dist. by UFS, Inc.

wwnw dilbert.com scottadama® sl som

© Scott Adams, Inc./Dist. by UFS, Inc.

350102 General ICT 2 (P. Baumann)

The Manifesto for
Agile Software Development ‘7 ONIVERSITY

= “We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:
 Individuals and interactions over processes and tools
» Working software over comprehensive documentation
 Customer collaboration over contract negotiation

» Responding to change over following a plan

= That s, while there is value in the items on the right, we value the items on
the left more.”

-- Kent Beck
et al

350102 General ICT 2 (P. Baumann)

What is “Agility”? Loosely Speaking... ¥ J .o

UNIVERSITY

Effective (rapid and adaptive) response to change

= Effective communication among all stakeholders

= Drawing the customer onto the team

= QOrganizing a team so that it is in control of the work performed
= Yielding ...

= Rapid, incremental delivery of software

350102 General ICT 2 (P. Baumann)

Principles of Agile Methods: CIPCS ~ v_)) .o

UNIVERSITY

= Customer involvement Embrace change

* customer closely involved Expect system requirements to
o ..to provide & prioritise new system change
requirements + to evaluate iterations - design system to accommodate these
changes

= |ncremental delivery

« software developed in increments Maintain simplicity

* customer specifying requirements to « Focus on simplicity in both software
be included per increment and development process
= People, not process » Wherever possible, actively work to

« Recognize + exploit team skills eliminate complexity

 Leave team to develop own ways of
working

350102 General ICT 2 (P. Baumann)

Extreme Programming \J o

UNIVERSITY

= An'extreme' variation of iterative development
based on very small increments

* New versions may be built several times per day;
e Increments are delivered to customers ~every 2 weeks;
* Alltests must be run for every build; build only accepted if all tests run successfully

= Relieson
e constant code improvement
e userinvolvement in the development team
e pairwise programming
= Perhaps best-known & most widely used agile method
e originally proposed by Kent Beck

350102 General ICT 2 (P. Baumann)

Pair Programming \J o

UNIVERSITY

programmers work in pairs, sitting together to develop code

* helps develop common ownership of code
e spreads knowledge across the team
» Cross checking of all code

informal review process

e each line of code looked at by more than 1 person

encourages refactoring

 whole team can benefit

Measurements suggest that development productivity with pair
programming is similar to that of two people working independently.

350102 General ICT 2 (P. Baumann)

XP and Change \J o

UNIVERSITY

= Conventional wisdom: design for change

» worth spending time & effort anticipating changes
* reduces costs later in the life cycle

= XP, however, maintains that this is not worthwhile

e cannot be reliably anticipated

= Rather, it proposes constant code improvement (refactoring)

e make changes easier when they have to be implemented

350102 General ICT 2 (P. Baumann)

The XP Release Cycle \J o

UNIVERSITY

Select user stories
for this release
Whats different
Break down: to waterfall?
stories — tasks
Develop /
integrate / test

Evaluate I Release I

350102 General ICT 2 (P. Baumann)

Extreme Programming Phases: Planning)) ,.c..

UNIVERSITY

= Begins with creation of “user stories”

» Requirements recorded on Story Cards
 Developers (!) break stories into ‘Tasks’

« Stories grouped for a deliverable increment determined by time available + relative
priority

 Agile team assesses each story and assigns a cost

e Commitment on delivery date

= |ncremental planning

« After first increment, “project velocity” helps to define subsequent delivery dates for
other increments

350102 General ICT 2 (P. Baumann)

Sample Story Card:
Document Downloading vJ o

= Downloading and printing an article

* First, you select the article that you want from a displayed list. You then have to tell the
system how you will pay for it - this can either be through a subscription, through a
company account or by credit card.

o Afterthis, you get a copyright form from the system to fill in and, when you have
submitted this, the article you want is downloaded onto your computer.

 You then choose a printer and a copy of the article is printed. You tell the system if
printing has been successful.

* Ifthe article is a print-only article, you can't keep the PDF version so it is automatically
deleted from your computer

350102 General ICT 2 (P. Baumann)

Extreme Programming Phases: Designy_)) ,.c.:

UNIVERSITY

= KIS(S) principle
= For difficult design problems: suggests “spike solutions” = design prototype

= Encourages “refactoring” to achieve iterative refinement of internal program
design

350102 General ICT 2 (P. Baumann)

Extreme Programming Phases: Codingy_)) ,.c.:

UNIVERSITY

= unit tests before coding commences
= Encourages “pair programming”

= All developers expected to refactor code continuously + immediately

» keeps code simple & maintainable

350102 General ICT 2 (P. Baumann)

Extreme Programming Phases: Testings) ,.c.:

UNIVERSITY

= Test-first development

= Automated test harnesses

* run all unit tests each time new release is built
 Incremental test development from scenarios
= User involvement in test development and validation

* “Acceptance tests” defined by customer

 executed to assess customer visible functionality

350102 General ICT 2 (P. Baumann)

Sample Test \J o

UNIVERSITY

Test 4: Test credit card validity

Input:

* string representing credit card number
 two integers representing month and year when card expires

Tests:

 all bytes in string are digits
* month between 1.. 12, year > current year

 Using first 4 digits of credit card number: check that card issuer is valid by looking up card
Issuer table.

 Check credit card validity by submitting card number & expiry date information to card issuer

Output:

* OK orerror messaqe indicating that the card is invalid
350102 General ICT 2 (P. Baumann)

JACOBS
UNIVERSITY

Extreme Programming Phases:
Integration ‘7

= After each task: integration of result into whole system

= (Check-in accepted only if all unit tests pass

350102 General ICT 2 (P. Baumann)

Consequences of Extreme Programminﬂ jncops

UNIVERSITY
= |ncremental planning = Simple Design: Enough design to meet
« Stories determined current requirements and no more

by time available + relative priority Simple code: Refactoring

= Small Releases _
= Sustainable pace

 minimal useful set of functionality that
provides business value is developed
first

 No large amounts of over-time — net
effect often reduced code quality,
medium term productivity

= Collective Ownership On-site Cust
= On-site Customer

« pairs of developers work on all areas of

system * End-user representative available full

. . time
 no islands of expertise,

all developers own all code Customer member of development

team, responsible for bringing system

(] ANvNne 218 arialarzw=ia lll
350102 General ICT 2 (P. Baumann)

Agile methods: Appraisal \J o

UNIVERSITY

= Team members may be unsuited to the intense involvement of agile
methods

= Developers need to be experienced, not too different in expertise

- nan ha Aiffinnilt tA I Aann intAaract Af AlictAmAare invinhiAAd In nrAanAce

|

r?‘-—(;J-\
'\r,-

(éﬁ

Copyr-ight & 2802 United Feature Syndicate; Inc.

EXTREME PROGRAMMING i
§ AND EACH FEATURE ; OKAY,HERE'S A
I CAN'T GIVE YOU g| NEEDS TO HAVE STORY: YOU GIVE
ALL OF THESE §| WHAT WE CALL A ME ALL OF MY
FEATURES IN THE #] "USER STORY. . FEATURES OR T'LL
FIRST VERSION. g] i RUIN YOUR LIFE.
e E
%

!
www. dilbert.com

350102 General ICT 2 (P. Baumann)

Agile methods: Appraisal \J o

UNIVERSITY

= Maintaining simplicity requires extra work

= Contracts may be a problem

Prioritising changes can be difficult when there are multiple stakeholders

e ...as with other approaches to iterative development

= Agile methods probably best suited to small/medium-sized business
systems or PC products = short-term, highly flexible projects

350102 General ICT 2 (P. Baumann)

Roadmap \J o

UNIVERSITY

= SE process management
 Waterfall model

* |Incremental methods
* Agile/XP methods

 Evolutionary methods

= CMMI

350102 General ICT 2 (P. Baumann)

Evolutionary Development \7 JACOBS

UNIVERSITY

= Exploratory development

 work with customers

« evolve final system from initial outline specification

* start with well-understood requirements, add new features as proposed by customer
— similar to incremental / iterative approach

= Throw-away prototyping

 Goal: understand system requirements,
not to build a deliverable

* start with poorly understood requirements to clarify what is really needed

350102 General ICT 2 (P. Baumann)

Prototyping \J o

UNIVERSITY

For some large systems, incremental development & delivery may be
impractical

* especially true when multiple teams working on different sites

Alternative: Prototyping

 experimental system developed as basis for formulating requirements
« thrown away when system specification agreed

prototype = initial version of a system used to

« demonstrate concepts
* fry out design options

prototype can be used in:

* requirements engineering process — help with requirements elicitation & validation
* design processes — explore options, develop Ul design

350102 Gerera! ICT 2 (P Rairmann)

Throw-Away Prototypes \J o

UNIVERSITY

= Prototypes should be discarded after development
as they are not a good basis for a production system:
* may be impossible to tune the system to meet non-functional requirements
e Prototypes normally undocumented
« prototype structure usually degraded through rapid change

e prototype probably will not meet normal organisational quality standards

350102 General ICT 2 (P. Baumann)

When Incremental Dev, When
Prototype? ‘7 -

UNIVERSITY

= incremental development: deliver working system to end-users

 development starts with requirements best understood

= throw-away prototyping: validate or derive system requirements

 prototyping process starts with requirements poorly understood

350102 General ICT 2 (P. Baumann)

Evolutionary Development: Appraisal \7 IncoBs

UNIVERSITY

= Problems

* Lack of process visibility

» Systems are often poorly structured

 Special skills (e.g. in languages for rapid prototyping) may be required
= Applicability

 For small or medium-size interactive systems

 For well isolated parts of large systems (e.g. the user interface)

* For short-lifetime systems

350102 General ICT 2 (P. Baumann)

| \ , JACOBS
UNIVERSITY

Capability Maturity
Model Integration

Sommerville, Chapter 28

Instructor: Peter Baumann _
,,In theory, there 1s no

email: p.baumann@jacobs-university.de difference
tel: -3178 between theory and practice.
office: room 88, Research 1 In practice, there 1s.”

-- Yogi Berra (?)

350102 General ICT 2 (P. Baumann)

Process Capability Assessment \J o

UNIVERSITY

= To what extent do an organisation’s processes follow best practice?

* identify areas of weakness for process improvement

= various models: SEI most influential

 Software Engineering Institute (SEI), www.sei.cmu.edu
» SEl's mission: promote software technology transfer, particularly to US defence
contractors

= CMM(I) framework measures process maturity, thereby helps with
iImprovement

 Capability Maturity Model (CMM) introduced in the early 1990s
 Revised: Capability Maturity Model Integration (CMMI) introduced in 2001
 See also: ISO/IEC 15504 (SPICE)

350102 General ICT 2 (P. Baumann)

CMM Organisational Maturity Levels _J .o

UNIVERSITY
= Process improvement
strategies
defined & used

r> Level 4 = Process management

Quantitatively Manag procedures
& strategies defined & used

_ = Quality management strategies defined &
Defined used

Level 3

= Product management procedures defined & used

= Essentially uncontrolled (each project a "one-time heroic act")

[Wikipedi

350102 General ICT 2 (P. Baumann)

Problems with the CMM \J o

UNIVERSITY

= Model levels

» Companies could be using practices from different levels at the same time but if all
practices from a lower level were not used, it was not possible to move beyond that
level

= Discrete rather than continuous

« Did not recognise distinctions between the top and the bottom of levels

= Practices oriented

 Concerned with how things were done (the practices)
rather than the goals to be achieved

350102 General ICT 2 (P. Baumann)

CMMI \J o

UNIVERSITY

= CMMI = Capability Maturity Model Integration

* integrated capability model
that includes software and systems engineering capability assessment

= Components:

» Process areas — 24 process areas that are relevant to process capability and
improvement are identified. These are organised into 4 groups.

» Goals — Goals are descriptions of desirable organisational states. Each process area
has associated goals.

 Practices — Practices are ways of achieving a goal;
however, they are advisory and other approaches to achieve the goal may be used.

350102 General ICT 2 (P. Baumann)

CMMI Process Areas \J o

UNIVERSITY
Process areas — Goals — Practices

Process management Organisational process definition; Organisational process focus;
Organisational training; Organisational process performance;
Organisational innovation and deployment

Project management Project planning; Project monitoring and control; Supplier
agreement management; Integrated project management; Risk
management; Integrated teaming; Quantitative project
management

Engineering Requirements management; Requirements development; Technical
solution; Product integration; Verification; Validation

Support Configuration management; Process and product quality
management; Measurement and analysis; Decision analysis and
resolution; Organisational environment for integration; Causal
analysis and resolution

350102 General ICT 2 (P. Baumann)

CMMI Goals

= Goal;

 Corrective actions are managed to
closure when the project’s
performance or results deviate
significantly from the plan.

* Actual performance and progress of
the project is monitored against the
project plan.

 The requirements are analysed and
validated and a definition of the
required functionality is developed.

* Root causes of defects and other
problems are systematically
determined.

» The process is institutionalised as a

| \ , JACOBS
UNIVERSITY

Process areas — Goals — Practices

Process area:

Specific goal in Project Monitoring and
Control

Specific goal in project monitoring and
control

Specific goal in requirements development

Specific goal in causal analysis and
resolution

350102 General ICT 2 (P. Baumann)

CMMI Practices

| \ , JACOBS
UNIVERSITY

Process areas — Goals — Practices

= Practice

are necessary and sufficient

Validate requirements to ensure that the resulting

product will perform as intended in the user’s
environment using multiple techniques as
appropriate.

Select the defects and other problems for
analysis.

Perform causal analysis of selected defects and
other problems and propose actions to address
them.

Establish and maintain an organisational policy
for planning and performing the requirements
development process.

= Associated goal

Analyse derived requirements to ensure that they .

The requirements are analysed and
validated and a definition of the
required functionality is developed.

Root causes of defects and other
problems are systematically
determined.

The process is institutionalised as a
defined process.

350102 Gerizral iCT 2 (P Batimann)

CMMI Assessment \7 o

UNIVERSITY

= Examines processes used in an organisation and assesses maturity in
each process area

= Merged into one final "grade” using a 6-point scale:

 Not performed;
 Performed;

« Managed;

* Defined;
 Quantitatively managed;

 Optimizing.

350102 General ICT 2 (P. Baumann)

The Continuous CMMI Model \7 o

UNIVERSITY

= First extension: staged CMMI model

« Each maturity level has process areas and goals.

 Eg, process area associated with "managed level" includes:
Requirements management; Project planning; Project monitoring and control;
Supplier agreement management; Measurement and analysis; Process and
product quality assurance.

= Next extension: continuous CMMI model

« finer-grain: considers individual or groups of practices, assesses their use
e maturity assessment not a single value, but one maturity value per area
e each process area: levels 1...5

« Advantage:
organisations can pick and choose process areas to improve according to their

local needs

350102 General ICT 2 (P. Baumann)

Sample Process Capability Profile ~ w_J o

UNIVERSITY

Project monitoringand control

Supplier ageement management

Riskmanagement

Configurationmanagement

Requirementsmanagement
Verification

Validation

350102 General ICT 2 (P. Baumann)

Open Source Maturity Model \J o

UNIVERSITY

= QualiPSo OpenSource Maturity Model (OMM)

« Methodology for assessing the Free/Libre Open Source @ UQql DS:
Software (FLOSS) development process -

* See http://en.wikipedia.org/wiki/OpenSource Maturity Model

= helps in building trust in the development process
of companies using or producing FLOSS

» To enable use of FLOSS software in production,
not only in prototypes

350102 General ICT 2 (P. Baumann)

http://en.wikipedia.org/wiki/OpenSource_Maturity_Model

QualiPSo Maturity Levels \J o

UNIVERSITY

- Basic (few necessary practices)

[y
N\
F £
\

[P\
- Intermediate — YN
Level /,--" RSKM "\\
 Advanced s \
+ Pl - Product Integrat 4 PPz \
— Froauct Integration Intermediate / PMC \\
« RSKM - Risk Management e J e \
. TST2-Test Part 2 y B
. _ Desi i ENV
DSN2 — Design 2 E::;: / s.{’g Fos 83”"1
* RASM - Results of third party assessment ,,§oc D“,Qg REQM PP1
« REP - Reputation
o [QualiPSo
e CONT - Contribution to FLOSS Product from SW]
Companies

350102 General ICT 2 (P. Baumann)

Wrap-Up \J o

UNIVERSITY

= CMM(I): assess IT company on its maturity wrt. managing its own
processes

= Process improvement in CMM(1) based on
reaching a set of goals related to good software engineering practice

= CMMI: summary value — detailed assessment on several parameters

Real World Benefits:
Lockheed Martin M&DS

SW CMM ML2 (1993) to ML 3 (1996) to CMMI ML5 (2002)

1996 - 2002

* increased software productivity by 30%

* decreased unit software cost by 20%

* decreased defect find and fix costs by 15%

350102 General ICT 2 (P. Baumann)

