
350102 General ICT 2 (P. Baumann)

350102
GENERAL INFORMATION &
COMMUNICATION TECHNOLOGY II
(GENICT)

- SW ENGINEERING
PROCESS MODELS -

Instructor: Peter Baumann

email: p.baumann@jacobs-university.de

tel: -3178

office: room 88, Research 1

2350102 General ICT 2 (P. Baumann)

Project Sucess/Failure Rate

[CHAOS Report, Standish Group]

3350102 General ICT 2 (P. Baumann)

Top 10 Project Failure Factors: Lack of...

1. Executive support (18%)

2. User involvement (16%)

3. Experienced project manager (14%)

4. Clear business objectives (12%)

5. Minimized scope (10%)

6. Standard software infrastructure (8%)

7. Firm basic requirements (6%)

8. Formal methodology (6%)

9. Reliable estimates (5%)

10.Other criteria (5%) [CHAOS Report,

Standish Group International, Inc.]

4350102 General ICT 2 (P. Baumann)

Struggling to

understand

requirements

30%

documentation

10%

design (8% std)

10%

Technical

difficulties

30%

Testing

5%

implementation

15%

Struggling to

understand

requirements

30%

documentation

10%

design

10%

Technical

difficulties

30%

Testing

5%

implementation

15%

Where Time Really Is Spent In Practice

Source: unknown

5350102 General ICT 2 (P. Baumann)

Software Project Management (PM)

 Project Management = activities to ensure that result is delivered

• on time

• on schedule

• in accordance with requirements of customer and vendor (!)

 Core: planning & monitoring

 needed because software development always subject to

• vendor budget & schedule constraints

• changes

6350102 General ICT 2 (P. Baumann)

 Proposal writing

 Customer (and sales, and marketing) communication

 Project planning and scheduling

 Project costing

 Project monitoring and reviews

 Personnel selection and evaluation

 Report writing and presentations

What Fills a PM's Day

Probably most time-consuming activity

Continuous, regularly revisited

Various types of plan

7350102 General ICT 2 (P. Baumann)

The Project Plan

 Project plan sets out:

• The resources available to the project

…who?

• The work breakdown

…what?

• A schedule for the work

…when?

 Project plan structure:

• Introduction

• Project organisation

• Risk analysis

• Hardware & software resource

requirements

• Work breakdown

• Project schedule

• Monitoring & reporting mechanisms

8350102 General ICT 2 (P. Baumann)

Types of Project Plan

Plan Description

Quality plan Describes the quality procedures and standards that will be

used in a project. See Chapter 27.

Validation plan Describes the approach, resources and schedule used for

system validation. See Chapter 22.

Configuration

management plan

Describes the configuration management procedures and

structures to be used. See Chapter 29.

Maintenance plan Predicts the maintenance requirements of the system,

maintenance costs and effort required. See Chapter 21.

Staff development

plan.

Describes how the skills and experience of the project team

members will be developed. See Chapter 25.

cf. Sommerville Chapters!

9350102 General ICT 2 (P. Baumann)

Project Planning Process

Establish project constraints

Make initial assessments of the project parameters

Define project milestones and deliverables

Draw up project schedule

while project has not been completed or cancelled

loop

Initiate activities according to schedule

Wait (for a while)

Review project progress

Revise estimates of project parameters

Update the project schedule

Re-negotiate project constraints and deliverables

if (problems arise) then

Initiate technical review and possible revision

end if

end loop

10350102 General ICT 2 (P. Baumann)

Tabular Task Durations & Dependencies

Activity Duration (days) Dependencies

T1 8

T2 15

T3 15 T1 (M1)

T4 10

T5 10 T2, T4 (M2)

T6 5 T1, T2 (M3)

T7 20 T1 (M1)

T8 25 T4 (M5)

T9 15 T3, T6 (M4)

T10 15 T5, T7 (M7)

T11 7 T9 (M6)

T12 10 T11 (M8)

11350102 General ICT 2 (P. Baumann)

Activity Network

start

T2

M3
T6

Finish

T10

M7T5

T7

M2
T4

M5

T8

4/7 /03

8 days

14/7 /03 15 days

4/8/03

15 days

25/8/03

7 days

5/9/03

10 days

19/9/03

15 days

11/8/03

25 days

10 days

20 days

5 days
25/7 /03

15 days

25/7 /03

18/7 /03

10 days

T1

M1 T3

T9

M6

T11

M8

T12

M4

12350102 General ICT 2 (P. Baumann)

 Estimating difficulty of problems (hence, costs)

 Productivity !~ #people working on a task

 Adding people to a late project makes it later

• communication overheads!

 The unexpected

always happens!

• Always allow contingency
in planning

 …as a partial little remedy, let's seek (tool) support

Potential Scheduling Problems

13350102 General ICT 2 (P. Baumann)

Activity Timeline (aka Gantt Chart)

Task (Work package)

Subtask

Progress

Milestone

Dependency

Henry L. Gantt (1861-1919)

14350102 General ICT 2 (P. Baumann)

Wrap-Up: Project Management

 Good project management essential for project success

• intangible nature of software causes problems for management

 Managers have diverse roles

but most significant activities are planning, estimating and scheduling

• iterative processes which continue throughout the course of a project

 Projects are broken into tasks with deliverables at predefined milestones

• Gantt chart, PERT chart for project activities, their durations and staffing

 Risk management for

• identifying risks which may affect the project

• planning risks do not develop into major threats

15350102 General ICT 2 (P. Baumann)

Commonalities & Differences

 SW & other engineering projects share

commonalities:

• Many activities not peculiar to

software management

many techniques of engineering PM

equally applicable to sw PM

• Technically complex engineering

systems tend to suffer from same

problems as software systems:

collaboration; deadlines; customers;

…

 On the other hand, software projects are

different from projects in other disciplines:

• product is intangible

• product is uniquely flexible

• Software engineering not recognized

as an engineering discipline with the

sane status as mechanical, electrical

engineering, etc.

• software development process

not standardised (well, not

completely)

• Many software projects

'one-off' projects

350102 General ICT 2 (P. Baumann)

Software Process Models

Instructor: Peter Baumann

email: p.baumann@jacobs-university.de

tel: -3178

office: room 88, Research 1

Sommerville, Chapters 4, 17

Pressman
Everyone knew
exactly what
had to be done
until someone
wrote it down!

17350102 General ICT 2 (P. Baumann)

The Software Process

 Software process =

a structured set of activities required to develop a software system

• Specification

• Design

• Validation

• Evolution.

 software process model =

abstract representation of a process

• description of a process from some particular perspective

18350102 General ICT 2 (P. Baumann)

Software Crisis

 early days of CS: difficulty of writing useful & efficient computer programs in

the required time

 Reason: rapid increases in computer power, complexity of problems that

could be tackled

• existing methods neither sufficient nor up to the mark

 Issues:

• Projects running over-budget, over-time

• Software inefficient, of low quality, not meeting requirements

• Projects unmanageable, code difficult to maintain

• Software was never delivered
When was that?

19350102 General ICT 2 (P. Baumann)

Structured Programming: Loops

Simple
loop

Nested
Loops

Concatenated

Loops Unstructured
Loops

20350102 General ICT 2 (P. Baumann)

So What Can Go Wrong?

 Viking Venus spacecraft: tiny bug in FORTRAN code

• Correct: DO 20 I = 1,100

• program code: DO 20 I = 1.100

21350102 General ICT 2 (P. Baumann)

For Geeks: Bad Stuff Goes in C++, Too

 documenting this takes longer than writing a clear version of the code.

 no error handling at all!

 How to do better?

for (count = 0, *templateList = myClass_New (templateCount, char *);

*templateList

&& count < templateCount

&& ((*templateList)[count] = aux_Duplicate (templates[count]));

count++);

22350102 General ICT 2 (P. Baumann)

Software Crisis: Response

 Structured programming

• Functions, blocks...all is better than goto!

• Avoid spaghetti code

• Later: object-oriented programming

 Defensive programming

• Better check twice

– in particular across interfaces!

• Runtime checks, safer PLs

 Academia: correctness proofs

 Systematic testing

Image: Wikipedia

– check it out!

23350102 General ICT 2 (P. Baumann)

Classical Software Process Models

 Waterfall model

• Separate and distinct phases of specification & development

 Evolutionary development

• Specification, development and validation are interleaved

 Component-based software engineering

• The system is assembled from existing components

 …plus many variants

• e.g. formal development:

waterfall-like process, but using formal specification refined through several stages to

an implementable design

24350102 General ICT 2 (P. Baumann)

Roadmap

 SE process management

• Waterfall model

• Incremental methods

• Agile/XP methods

• Iterative / spiral methods (eg, RUP)

• Evolutionary methods

• V-Model

 CMMI Note:

deviates somewhat from

Sommerville's classification,

relies on Kal Toth (see later)

25350102 General ICT 2 (P. Baumann)

Roadmap

 SE process management

• Waterfall model

• Incremental methods

• Agile/XP methods

• Iterative / spiral methods (eg, RUP)

• Evolutionary methods

• V-Model

 CMMI

26350102 General ICT 2 (P. Baumann)

Waterfall Model

requirements

definition

implementation and

unit testing

integration and

system testing

operation and

maintenance

system and

software design

27350102 General ICT 2 (P. Baumann)

Waterfall Model: Appraisal

 Partitioning into distinct stages

difficult to accommodate change after process is underway

Inflexible

• One phase has to be complete before moving onto next phase

 Few business systems have stable requirements

• changing customer requirements

• Increased domain understanding

• Unforeseen technical difficulties

 only appropriate when requirements well-understood and fairly stable

 mostly used for large systems engineering projects (?)

where system is developed at several sites

28350102 General ICT 2 (P. Baumann)

Roadmap

 SE process management

• Waterfall model

• Incremental methods

• Agile/XP methods

• Evolutionary methods

 CMMI

29350102 General ICT 2 (P. Baumann)

The Incremental Model

increment #n

communication

reqs

design

impl

integration

operation

delivery of

increment #n

communication

reqs

design

impl

integration

operation

increment #1

delivery of

increment #1

Project calendar time

F
un

ct
io

na
lit

y
&

 fe
at

ur
es

30350102 General ICT 2 (P. Baumann)

Incremental Delivery

 development & delivery broken down into increments

• each increment delivering part of the required functionality

 User requirements are prioritised

• highest priority requirements included in early increments

 Once development of increment is started, requirements are frozen

• requirements for later increments can continue to evolve

31350102 General ICT 2 (P. Baumann)

Variant: The RAD Model

design

impl

communication

reqs

team #n

design

impl

integration

delivery

feedback

team #1

integration

60 – 90 days

What does RAD

stand for?

32350102 General ICT 2 (P. Baumann)

Incremental Development: Appraisal

 Customer value delivered with each increment

• system functionality is available earlier

 Early increments act as a prototype

• help elicit requirements for later increments

 Lower risk of overall project failure

 Highest priority system services tend to receive most testing

• Why?

33350102 General ICT 2 (P. Baumann)

Roadmap

 SE process management

• Waterfall model

• Incremental methods

• Agile/XP methods

• Evolutionary methods

 CMMI

34350102 General ICT 2 (P. Baumann)

The Manifesto for

Agile Software Development

 “We are uncovering better ways of developing software by doing it and

helping others do it. Through this work we have come to value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

 That is, while there is value in the items on the right, we value the items on

the left more.”

-- Kent Beck

et al

35350102 General ICT 2 (P. Baumann)

What is “Agility”? Loosely Speaking…

 Effective (rapid and adaptive) response to change

 Effective communication among all stakeholders

 Drawing the customer onto the team

 Organizing a team so that it is in control of the work performed

 Yielding …

 Rapid, incremental delivery of software

36350102 General ICT 2 (P. Baumann)

Principles of Agile Methods: CIPCS

 Customer involvement

• customer closely involved

• ...to provide & prioritise new system
requirements + to evaluate iterations

 Incremental delivery

• software developed in increments

• customer specifying requirements to
be included per increment

 People, not process

• Recognize + exploit team skills

• Leave team to develop own ways of
working

 Embrace change

• Expect system requirements to

change

• design system to accommodate these

changes

 Maintain simplicity

• Focus on simplicity in both software

and development process

• Wherever possible, actively work to

eliminate complexity

37350102 General ICT 2 (P. Baumann)

Extreme Programming

 An 'extreme' variation of iterative development

based on very small increments

• New versions may be built several times per day;

• Increments are delivered to customers ~every 2 weeks;

• All tests must be run for every build; build only accepted if all tests run successfully

 Relies on

• constant code improvement

• user involvement in the development team

• pairwise programming

 Perhaps best-known & most widely used agile method

• originally proposed by Kent Beck

38350102 General ICT 2 (P. Baumann)

Pair Programming

 programmers work in pairs, sitting together to develop code

• helps develop common ownership of code

• spreads knowledge across the team

• Cross checking of all code

 informal review process

• each line of code looked at by more than 1 person

 encourages refactoring

• whole team can benefit

 Measurements suggest that development productivity with pair

programming is similar to that of two people working independently.

39350102 General ICT 2 (P. Baumann)

XP and Change

 Conventional wisdom: design for change

• worth spending time & effort anticipating changes

• reduces costs later in the life cycle

 XP, however, maintains that this is not worthwhile

• cannot be reliably anticipated

 Rather, it proposes constant code improvement (refactoring)

• make changes easier when they have to be implemented

40350102 General ICT 2 (P. Baumann)

The XP Release Cycle

Select user stories

for this release

Plan release

Develop /

integrate / test

Release

Break down:

stories tasks

Evaluate

What‘s different

to waterfall?

41350102 General ICT 2 (P. Baumann)

Extreme Programming Phases: Planning

 Begins with creation of “user stories”

• Requirements recorded on Story Cards

• Developers (!) break stories into „Tasks‟

• Stories grouped for a deliverable increment determined by time available + relative

priority

• Agile team assesses each story and assigns a cost

• Commitment on delivery date

 Incremental planning

• After first increment, “project velocity” helps to define subsequent delivery dates for

other increments

42350102 General ICT 2 (P. Baumann)

Sample Story Card:

Document Downloading

 Downloading and printing an article

• First, you select the article that you want from a displayed list. You then have to tell the

system how you will pay for it - this can either be through a subscription, through a

company account or by credit card.

• After this, you get a copyright form from the system to fill in and, when you have

submitted this, the article you want is downloaded onto your computer.

• You then choose a printer and a copy of the article is printed. You tell the system if

printing has been successful.

• If the article is a print-only article, you can't keep the PDF version so it is automatically

deleted from your computer

43350102 General ICT 2 (P. Baumann)

Extreme Programming Phases: Design

 KIS(S) principle

 For difficult design problems: suggests “spike solutions” = design prototype

 Encourages “refactoring” to achieve iterative refinement of internal program

design

44350102 General ICT 2 (P. Baumann)

Extreme Programming Phases: Coding

 unit tests before coding commences

 Encourages “pair programming”

 All developers expected to refactor code continuously + immediately

• keeps code simple & maintainable

45350102 General ICT 2 (P. Baumann)

Extreme Programming Phases: Testing

 Test-first development

 Automated test harnesses

• run all unit tests each time new release is built

• Incremental test development from scenarios

 User involvement in test development and validation

• “Acceptance tests” defined by customer

• executed to assess customer visible functionality

46350102 General ICT 2 (P. Baumann)

 Test 4: Test credit card validity

 Input:

• string representing credit card number

• two integers representing month and year when card expires

 Tests:

• all bytes in string are digits

• month between 1 .. 12, year current year

• Using first 4 digits of credit card number: check that card issuer is valid by looking up card
issuer table.

• Check credit card validity by submitting card number & expiry date information to card issuer

 Output:

• OK or error message indicating that the card is invalid

Sample Test

47350102 General ICT 2 (P. Baumann)

Extreme Programming Phases:

Integration

 After each task: integration of result into whole system

 Check-in accepted only if all unit tests pass

48350102 General ICT 2 (P. Baumann)

Consequences of Extreme Programming

 Incremental planning

• Stories determined

by time available + relative priority

 Small Releases

• minimal useful set of functionality that

provides business value is developed

first

 Collective Ownership

• pairs of developers work on all areas of

system

• no islands of expertise,

all developers own all code

• Anyone can change anything

 Simple Design: Enough design to meet

current requirements and no more

 Simple code: Refactoring

 Sustainable pace

• No large amounts of over-time – net

effect often reduced code quality,

medium term productivity

 On-site Customer

• End-user representative available full

time

• Customer member of development

team, responsible for bringing system

requirements to the team

49350102 General ICT 2 (P. Baumann)

Agile methods: Appraisal

 Team members may be unsuited to the intense involvement of agile

methods

 Developers need to be experienced, not too different in expertise

 can be difficult to keep interest of customers involved in process

50350102 General ICT 2 (P. Baumann)

Agile methods: Appraisal

 Maintaining simplicity requires extra work

 Contracts may be a problem

• Prioritising changes can be difficult when there are multiple stakeholders

• …as with other approaches to iterative development

 Agile methods probably best suited to small/medium-sized business

systems or PC products = short-term, highly flexible projects

51350102 General ICT 2 (P. Baumann)

Roadmap

 SE process management

• Waterfall model

• Incremental methods

• Agile/XP methods

• Evolutionary methods

 CMMI

52350102 General ICT 2 (P. Baumann)

Evolutionary Development

 Exploratory development

• work with customers

• evolve final system from initial outline specification

• start with well-understood requirements, add new features as proposed by customer

similar to incremental / iterative approach

 Throw-away prototyping

• Goal: understand system requirements,

not to build a deliverable

• start with poorly understood requirements to clarify what is really needed

53350102 General ICT 2 (P. Baumann)

 For some large systems, incremental development & delivery may be

impractical

• especially true when multiple teams working on different sites

 Alternative: Prototyping

• experimental system developed as basis for formulating requirements

• thrown away when system specification agreed

 prototype = initial version of a system used to

• demonstrate concepts

• try out design options

 prototype can be used in:

• requirements engineering process help with requirements elicitation & validation

• design processes explore options, develop UI design

• testing process run back-to-back tests

Prototyping

54350102 General ICT 2 (P. Baumann)

Throw-Away Prototypes

 Prototypes should be discarded after development

as they are not a good basis for a production system:

• may be impossible to tune the system to meet non-functional requirements

• Prototypes normally undocumented

• prototype structure usually degraded through rapid change

• prototype probably will not meet normal organisational quality standards

55350102 General ICT 2 (P. Baumann)

When Incremental Dev, When

Prototype?

 incremental development: deliver working system to end-users

• development starts with requirements best understood

 throw-away prototyping: validate or derive system requirements

• prototyping process starts with requirements poorly understood

56350102 General ICT 2 (P. Baumann)

Evolutionary Development: Appraisal

 Problems

• Lack of process visibility

• Systems are often poorly structured

• Special skills (e.g. in languages for rapid prototyping) may be required

 Applicability

• For small or medium-size interactive systems

• For well isolated parts of large systems (e.g. the user interface)

• For short-lifetime systems

350102 General ICT 2 (P. Baumann)

Capability Maturity
Model Integration

Instructor: Peter Baumann

email: p.baumann@jacobs-university.de

tel: -3178

office: room 88, Research 1

Sommerville, Chapter 28

„In theory, there is no

difference

between theory and practice.

In practice, there is.“

-- Yogi Berra (?)

58350102 General ICT 2 (P. Baumann)

Process Capability Assessment

 To what extent do an organisation‟s processes follow best practice?

• identify areas of weakness for process improvement

 various models; SEI most influential

• Software Engineering Institute (SEI), www.sei.cmu.edu

• SEI‟s mission: promote software technology transfer, particularly to US defence

contractors

 CMM(I) framework measures process maturity, thereby helps with

improvement

• Capability Maturity Model (CMM) introduced in the early 1990s

• Revised: Capability Maturity Model Integration (CMMI) introduced in 2001

• See also: ISO/IEC 15504 (SPICE)

59350102 General ICT 2 (P. Baumann)

CMM Organisational Maturity Levels

 Process improvement
strategies
defined & used

 Quality management strategies defined &
used

 Process management
procedures
& strategies defined & used

 Product management procedures defined & used

 Essentially uncontrolled (each project a "one-time heroic act")

[Wikipedi

a]

61350102 General ICT 2 (P. Baumann)

Problems with the CMM

 Model levels

• Companies could be using practices from different levels at the same time but if all

practices from a lower level were not used, it was not possible to move beyond that

level

 Discrete rather than continuous

• Did not recognise distinctions between the top and the bottom of levels

 Practices oriented

• Concerned with how things were done (the practices)

rather than the goals to be achieved

62350102 General ICT 2 (P. Baumann)

CMMI

 CMMI = Capability Maturity Model Integration

• integrated capability model

that includes software and systems engineering capability assessment

 Components:

• Process areas – 24 process areas that are relevant to process capability and

improvement are identified. These are organised into 4 groups.

• Goals – Goals are descriptions of desirable organisational states. Each process area

has associated goals.

• Practices – Practices are ways of achieving a goal;

however, they are advisory and other approaches to achieve the goal may be used.

63350102 General ICT 2 (P. Baumann)

CMMI Process Areas

Process management Organisational process definition; Organisational process focus;

Organisational training; Organisational process performance;

Organisational innovation and deployment

Project management Project planning; Project monitoring and control; Supplier

agreement management; Integrated project management; Risk

management; Integrated teaming; Quantitative project

management

Engineering Requirements management; Requirements development; Technical

solution; Product integration; Verification; Validation

Support Configuration management; Process and product quality

management; Measurement and analysis; Decision analysis and

resolution; Organisational environment for integration; Causal

analysis and resolution

Process areas – Goals – Practices

64350102 General ICT 2 (P. Baumann)

 Process area:

• Specific goal in Project Monitoring and

Control

• Specific goal in project monitoring and

control

• Specific goal in requirements development

• Specific goal in causal analysis and

resolution

• Generic goal

CMMI Goals

 Goal:

• Corrective actions are managed to
closure when the project‟s
performance or results deviate
significantly from the plan.

• Actual performance and progress of
the project is monitored against the
project plan.

• The requirements are analysed and
validated and a definition of the
required functionality is developed.

• Root causes of defects and other
problems are systematically
determined.

• The process is institutionalised as a
defined process.

Process areas – Goals – Practices

65350102 General ICT 2 (P. Baumann)

 Associated goal

•

• The requirements are analysed and
validated and a definition of the
required functionality is developed.

• Root causes of defects and other
problems are systematically
determined.

• The process is institutionalised as a
defined process.

•

•

 Practice

• Analyse derived requirements to ensure that they
are necessary and sufficient

• Validate requirements to ensure that the resulting
product will perform as intended in the user‟s
environment using multiple techniques as
appropriate.

• Select the defects and other problems for
analysis.

• Perform causal analysis of selected defects and
other problems and propose actions to address
them.

• Establish and maintain an organisational policy
for planning and performing the requirements
development process.

• Assign responsibility and authority for performing
the process, developing the work products and
providing the services of the requirements

CMMI Practices
Process areas – Goals – Practices

66350102 General ICT 2 (P. Baumann)

CMMI Assessment

 Examines processes used in an organisation and assesses maturity in

each process area

 Merged into one final "grade" using a 6-point scale:

• Not performed;

• Performed;

• Managed;

• Defined;

• Quantitatively managed;

• Optimizing.

67350102 General ICT 2 (P. Baumann)

The Continuous CMMI Model

 First extension: staged CMMI model

• Each maturity level has process areas and goals.

• Eg, process area associated with "managed level" includes:
Requirements management; Project planning; Project monitoring and control;
Supplier agreement management; Measurement and analysis; Process and
product quality assurance.

 Next extension: continuous CMMI model

• finer-grain: considers individual or groups of practices, assesses their use

• maturity assessment not a single value, but one maturity value per area

• each process area: levels 1…5

• Advantage:
organisations can pick and choose process areas to improve according to their
local needs

68350102 General ICT 2 (P. Baumann)

Sample Process Capability Profile

Project monitoringand control

Supplier agreement management

Riskmanagement

Configurationmanagement

Requirementsmanagement

Verification

Validation

1 2 3 4 5

69350102 General ICT 2 (P. Baumann)

Open Source Maturity Model

 QualiPSo OpenSource Maturity Model (OMM)

• Methodology for assessing the Free/Libre Open Source

Software (FLOSS) development process

• see http://en.wikipedia.org/wiki/OpenSource_Maturity_Model

 helps in building trust in the development process

of companies using or producing FLOSS

• To enable use of FLOSS software in production,

not only in prototypes

http://en.wikipedia.org/wiki/OpenSource_Maturity_Model

70350102 General ICT 2 (P. Baumann)

QualiPSo Maturity Levels

• Basic (few necessary practices)

• Intermediate

• Advanced

• PI – Product Integration

• RSKM – Risk Management

• TST2 – Test Part 2

• DSN2 – Design 2

• RASM – Results of third party assessment

• REP – Reputation

• CONT – Contribution to FLOSS Product from SW

Companies

[QualiPSo

]

71350102 General ICT 2 (P. Baumann)

Wrap-Up

 CMM(I): assess IT company on its maturity wrt. managing its own

processes

 Process improvement in CMM(I) based on

reaching a set of goals related to good software engineering practice

 CMMI: summary value detailed assessment on several parameters

