
1Software Engineering – © P. Baumann

"Plan? Who needs a plan?"

Introduction to UML

Excellent work! But maybe we

should get a little more detailed here...?

Instructor: Peter Baumann

email: pbaumann@constructor.university

tel: -3178

office: room 88, Research 1

2Software Engineering – © P. Baumann

What is UML?

 What is UML?

• "The UML (Unified Modeling Language)

is the [OMG] standard language

for specifying, visualizing, constructing, and

documenting all the artifacts of a software system.”

• Synthesis of notations by Grady Booch,

Jim Rumbaugh, Ivar Jacobson, and many others

• Rational, Objectory, et al, ...now IBM

 diagram perspectives

• Conceptual, specification, implementation

3Software Engineering – © P. Baumann

Diagram Types Overview

 Main diagram types, according to „80/20 rule“:

• Use Case Diagram (functional)

• Activity Diagram (behavioral)

• Class Diagram (structural)

• State Diagram (behavioral)

• Sequence Diagram (behavioral)

 Further, not addressed here:

• Object Diagram (structural), Collaboration Diagram (structural), Package Diagram

(structural), Deployment Diagram (structural)

• Interaction Diagram ::= Collaboration Diagram | Sequence Diagram

4Software Engineering – © P. Baumann

Use Case Diagrams

 use case = chunk of functionality, not a software module

• Should contain a verb in its name

 actor = someone or some thing interacting

with system under development

• Aka role in scenario

 Visualize relationships

between actors and

use cases

 capture high-level alternate

scenarios, get customer agreement (early !)

5Software Engineering – © P. Baumann

Use Case Diagrams: Larger Example

6Software Engineering – © P. Baumann

Activity Diagrams

 Represents the overall flow of control

 Graphical workflow of activities and actions

• like flow chart, but user-perceived actions (business model)

Synchronisation bar

(fork/join)

Transition

guard

Swimlanes

7Software Engineering – © P. Baumann

Sequence Diagrams

 Displays object interactions arranged in a time sequence

 Can be from user„s perspective!

• good for: showing what‟s going on
and driving out requirements when
interacting with customers

 How many SDs? Rule of thumb:

• for every basic flow of every use case

• for high-level, risky scenarios

 Useful for designer and customer to answer the question:

„what objects and interactions will I need to accomplish the functionality

specified by the flow of events?“

8Software Engineering – © P. Baumann

Sequence Diagrams: Larger Example

[lucidchart]

9Software Engineering – © P. Baumann

Activity vs Sequence Diagrams?

Activity diagram:

 Granularity: user-perceived actions

 Emphasis on internal state transitions

Sequence diagram:

 Granularity: actors + system components

 Emphasis on component interaction

10Software Engineering – © P. Baumann

State Transition Diagrams

 show life history of a given class

 use for classes that typically have a lot of dynamic behavior

• Sequence Diagram: class that‟s on a lot of sequence diagrams, getting and sending a

lot of messages is candidate

guard

11Software Engineering – © P. Baumann

Class Diagrams

 Class = collection of objects with common structure,

common behavior, common relationships, and common semantics

 Displayed as box with up to 3 compartments:

• Name

• List of attributes (aka state variables)

• List of operations

 Class modeling elements include:

• Classes with structure + behavior

• Relationships

• Multiplicity and navigation indicators

• Role names

12Software Engineering – © P. Baumann

Class Diagrams: (Instance) Relships

 Models that two objects can “talk”

 Association – bi-directional connection between classes

• “I can send you a message because if I‟m associated with you, I know you‟re there.”

 Aggregation – stronger form: „has a“

• R. between a whole and its parts

 Dependency – weaker form

• “need your services,
but I don‟t know that you exist.”

 Quatrani: „typically first make

everything an association,

lateron refine“

described?

13Software Engineering – © P. Baumann

Class Diagrams: Multiplicities, Navigation

 Multiplicity numbers & intervals denote number of instances

that can/must participate in relationship instance

• For both ends

of relationship edge

• 0..1 (may have one)

• 1 (must have one)

• 0..* or * (may have many)

• 1..* (has at least one)

 Arrow head to denote:

traversable only this

direction

14Software Engineering – © P. Baumann

Class Diagrams: Inheritance

 Inheritance = relation between subclass and superclass

 Subclass instances have

• all properties specified

in superclass

• plus the specific ones

defined with the subclass

 Also called „is-a“

15Software Engineering – © P. Baumann

Class Diagrams: Larger Example

16Software Engineering – © P. Baumann

Re-Iterating...

 UML = several diagram types to capture different aspects of sw system

• Structural, functional, behavioral

 Mutual interrelations

• use them to do consistency & plausibility cross checking!

 Fine so far? Let‘s go on...

17Software Engineering – © P. Baumann

Outlook: xUML

 (subset of) UML + executable semantics + timing rules

 Approach: software development method + abstract language

 Advantages:

• High-level description serves as documentation

• Translation: platform-independent models (PIM) platform-specific models (PSM)

 Note: Generalizations always notated as {complete, disjoint} DBWS

18Software Engineering – © P. Baumann

Outlook: DSLs

 Alternative to UML for describing systems :

domain-specific modelling languages (DSLs)

• UML considered (too) complex (general-purpose), software biased

 Ex: SysML = general-purpose modelling language

for systems engineering applications [sysml.org]

• UML dialect for hardware, information, processes, personnel, facilities

• Ex: aerospace, defense, automotive, ...

 Rule of thumb:

• UML better for enterprise apps (millions of possible directions)

• DSLs better for embedded systems (focused app domain & paths)

19Software Engineering – © P. Baumann

 UML industry standard

for visually describing all aspects during software life cycle

• Use Case Diagram, Activity Diagram, Sequence Diagram, Class Diagram, State Diagram, ...

 More work in the beginning (= before coding starts),

but will pay off in

• Better design (less flaws, more consistency)

• Fewer costly surprises late at integration / customer testing time

• Better plannable

• Higher customer satisfaction, better career

Wrap-Up

20Software Engineering – © P. Baumann

 „revision cloud“ common in mechanical engineering

Caveat: Symbology Interpretation

[autodesk.blogs.com]

21Software Engineering – © P. Baumann

 „revision cloud“ common in mechanical engineering

Caveat: Symbology Interpretation

[autodesk.blogs.com]

