
1Software Engineering – © P. Baumann

Design Patterns

Instructor: Peter Baumann

email: pbaumann@constructor.university

tel: -3178

office: room 88, Research 1

Credits:

Xiaochuan Yi, U of Georgia

Nenad Medvidović

dofactory.com

Sommerville, Chapter 18

CONGRESS.SYS Corrupted:

Re-boot Washington D.C. (Y/n)?

2Software Engineering – © P. Baumann

Introduction to Design Patterns

 Be a good programmer

• …and efficient – learn from others!

 Similar patterns occur over and over

• Not reinventing the wheel

• Sharing knowledge of problem solving

• communication between programmers

• Write elegant and graceful code

 Computer programming as art [Donald Knuth]

• Recognize conceptual beauty

3Software Engineering – © P. Baumann

Design Patterns

 pattern =

description of the problem and the essence of its solution

• should be sufficiently abstract to be reused in different settings

• often rely on object characteristics such as inheritance and polymorphism

 design pattern =

way of re-using abstract knowledge about a (sw) design problem and its

solution

4Software Engineering – © P. Baumann

History of Design Patterns

 First used in architecture

• Christopher Alexander,

1977

• Ex. How to create

a beer hall where

people socialize?

 Design Patterns: Elements of Reusable Object-Oriented Software (1995)

• “Gang of four”: Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides

5Software Engineering – © P. Baumann

A Pattern Template

 Name

• meaningful identifier

 Description

• What’s the essence?

 Problem / applicability description

• When advantageous to use?

 Solution description

• Not concrete design, but template can be instantiated in different ways

 Consequences

• results & trade-offs

6Software Engineering – © P. Baumann

 Name

• Singleton

 Description

• Ensure a class has only one instance and provide a global point of access to it

 Problem / Applicability

• Used when only one object of a kind may exist in the system

 Solution

• defines an Instance operation that lets clients access its unique instance

• Instance is a class operation

• responsible for creating and maintaining its own unique instance

Patterns by Example: Singleton

7Software Engineering – © P. Baumann

Singleton Code

// Singleton pattern -- Structural example

class Singleton
{
public:

static Singleton* Instance()
{

static Singleton instance;
return &instance;

}
private:

Singleton() {}
}

int main()
{

// Constructor is protected, cannot use new
Singleton *s1 = Singleton::Instance();
Singleton *s2 = Singleton::Instance();
Singleton *s3 = s1->Instance();
Singleton &s4 = *Singleton::Instance();

if(s1 == s2)
cout << "same instance" << endl;

}

8Software Engineering – © P. Baumann

class LoadBalancer
{
private:

LoadBalancer()
{
add_all_servers;

}
public:

static LoadBalancer *GetLoadBalancer()
{

// thread-safe in C++ 11
static LoadBalancer balancer;
return &balancer;

}
…
}

Singleton Application

// SingletonApp test

LoadBalancer *b1 = LoadBalancer::GetLoadBalancer();
LoadBalancer *b2 = LoadBalancer::GetLoadBalancer();

if(b1 == b2)
cout << "same instance" << endl;

9Software Engineering – © P. Baumann

Singleton, Revisited

// Singleton pattern

class Singleton
{
public:

static Singleton* Instance()
{

static Singleton instance;
return &instance;

}
private:

Singleton() {}
}

Problems:
• Subclassing

• Copy constructor

• Destructor: when?

• Static vs. heap

// Singleton -- modified example

class Singleton
{
public:

static Singleton* Instance()
{

static Singleton instance;
return &instance;

}
private:

Singleton() {}
Singleton(const Singleton&);
Singleton& operator=(const Singleton&);

}

10Software Engineering – © P. Baumann

Multiple displays enabled by Observer

Subject

A: 40
B: 25
C: 15
D: 20

Observer 1 Observer 2

0

50

25

A B C D

A

B

C

D

11Software Engineering – © P. Baumann

 Name

• Observer

 Description

• Separates the display of object state from the object itself

 Problem / Applicability

• Used when multiple displays of state are needed

 Solution

• See slide with UML description

 Consequences

• Optimizations to enhance display performance are impractical

The Observer Pattern

12Software Engineering – © P. Baumann

The Observer Pattern

Subject Observer

Attach (Observer)
Detach (Observer)
Notify ()

Update ()

ConcreteSubject

GetState ()

subjectState

ConcreteObserver

Update ()

observerState

return subjectState

for all o in observers
 o -> Update ()

observerState =
 subject -> GetState ()

13Software Engineering – © P. Baumann

 Description

• Define an object that encapsulates how a set of objects interact

• Mediator promotes loose coupling by keeping objects from referring to each other explicitly

 Problem / Applicability

• Complex interaction exists

 Consequences

• Limits subclassing; Decouples colleagues; Simplifies object protocols; Abstracts how objects
cooperate; Centralizes control

The Mediator Pattern

14Software Engineering – © P. Baumann

The Adapter Pattern

 Description

• Adapter lets classes work together

that could not otherwise because of incompatible interfaces

 Problem / Applicability

• Need to use an existing class whose interface does not match

• Need to make use of incompatible classes

 Consequences

• Class adapter commits to the concrete Adapter class

15Software Engineering – © P. Baumann

Adapter: Another View [Wikipedia]

16Software Engineering – © P. Baumann

Composite Pattern

 Definition

• Compose objects into tree structures to represent part-whole hierarchies

• Composite lets clients treat individual objects and compositions of objects uniformly

 Problem / Applicability

• Any time there is partial overlap in the capabilities of objects

17Software Engineering – © P. Baumann

Composite Pattern UML Diagram

18Software Engineering – © P. Baumann

Some Modern Patterns

 Inversion of control

 Dependency injection

19Software Engineering – © P. Baumann

Inversion of Control [Pattern]

 Framework…

• …first constructs an object (such as a controller)

• …then passes control flow to it

 Principle:

function pointers

 DOM example: <p id="output"></p>

<script>

var registeredListener = function () {

document.getElementById("output").innerHTML = "listener called thru click";

}

document.addEventListener("click", registeredListener, true);

document.getElementById("output").innerHTML = "event handler registered";

</script>

initialize();

while (message != quit) {

20Software Engineering – © P. Baumann

Dependency Injection Pattern

 Description

• object /function receives other objects/functions it requires, instead of creating them directly

 Problem / Applicability

• separate concerns of constructing objects and using them loosely coupled programs

 Solution

• Analogy cars: uniform driver (client) interface,

gas/diesel/electric engine injected by factory is unimportant to client

 Consequences

• makes implicit dependencies explicit, helps solving these problems:

• How can a class be independent from the creation of the objects it depends on?

• How can an application, and the objects it uses support different configurations?

22Software Engineering – © P. Baumann

 Creational, ex:

• Factory Creates an instance of several families of classes

• Builder Separates object construction from its representation

• Singleton A class of which only a single instance can exist

 Structural, ex:

• Adapter Match interfaces of different classes

• Composite A tree structure of simple and composite objects

• Decorator Add responsibilities to objects dynamically

• Proxy An object representing another object

 Behavioral, ex:

• Mediator Defines simplified communication between classes

• Observer A way of notifying change to a number of classes

• Template Method Defer the exact steps of an algorithm to a subclass

• Visitor Defines a new operation to a class without change

Types of Patterns

23Software Engineering – © P. Baumann

Summary

 Design patterns = generic, re-usable design templates for OOP

• Code templates, to be adapted by programmer

• Faster, safer implementation through re-use

 three types of patterns: creational, structural, and behavioral

 Design pattern catalog

• http://www.dofactory.com/net/design-patterns#list

 It‘s practice – show it in interviews!

