
1Software Engineering – © P. Baumann

Software Testing

Instructor: Peter Baumann

email: pbaumann@constructor.university

tel: -3178

office: room 88, Research 1

“Hey, it compiles – let’s ship it!”

Credits:

IPL (Cantata++)

Rick Mercer; Franklin, Beedle & Associates

Satish Mishra; HU Berlin

Hyoung Hong; Concordia University

Pressman

2Software Engineering – © P. Baumann

Test Your Testing!
[Myers 1982]

 Program reads 3 integers from cmd line,

interprets as side lengths of a triangle

 Outputs triangle type:

• Non-equilateral

• Equilateral

• Isosceles

 ...test cases?

0 0 0

-

2 5 7

3 4 5

1 1 1

1

2 2 8

A b c

% # *

7 8 9 10

<>

2 2 3

^C

2 3

A

1

1 2

3Software Engineering – © P. Baumann

Why Tests? - Software Costs

Cost

Testing

Requirements

Design and

Implementation

Maintenance

"If debugging is the process of removing bugs,

then programming must be the process of putting them in."



4Software Engineering – © P. Baumann

Cantata++ running under Symbian – Nokia
Series 60

Some Better-Test-Well Applications

Nuclear Reactor Control - Thales

Train Control - Alcatel

Medical Systems – GE Medical

Airbus A340 – Ultra ElectronicsEFA Typhoon – BAe Systems International Space Station
– Dutch Space

5Software Engineering – © P. Baumann

What Is Software Testing?

 Software Testing =

process of exercising a program

with the specific intent of finding errors

prior to delivery to the end user.



6Software Engineering – © P. Baumann

Who Tests the Software?

independent tester
Must learn about the system

but will attempt to break it

driven by quality

developer
Understands the system

but will test "gently"

driven by "delivery"

“Debugging is twice as hard as writing the code in the first place.

Therefore, if you write the code as cleverly as possible,

you are, by definition, not smart enough to debug it.”

- Brian Kernighan



7Software Engineering – © P. Baumann

Test Feature Space

Accessibility
white

box
grey

box
black

box

acceptance

Level

unit

integration

system

regression

Automation

manual

semi-automatic

automatic

Quality

correctness

robustness

performance

reliabilityusability

safety
security

maintainability

portability

interoperability
…

9Software Engineering – © P. Baumann

Equivalence Class Testing

 Practically never can do exhaustive testing on input combinations

 How to find „good“ test cases?

• Good = likely to produce an error

 Idea:

build equivalence classes

of test input situations,

test one candidate per class
1014 possible paths;

1 test per millisecond

= 3,170 years to test completely

loop 20 X



10Software Engineering – © P. Baumann

goodbad bad

a b0

A Pragmatic Test Case Strategy

function f(int n) int with a<n<b:

X X X
random per region

X X X+1X-1X+1X-1
boundaries

Integer.MIN Integer.MAX

X X+1X-1
special values

X X

11Software Engineering – © P. Baumann

Test Your Testing, Reloaded

 Program reads 3 integers from cmd line,

interprets as side lengths of a triangle

 Outputs triangle type:

• Non-equilateral

• Equilateral

• Isosceles

 ...test cases?

12Software Engineering – © P. Baumann

Testing & The Design Cycle

What users

really need

Requirements

Design

Acceptance
testing

System
testing

Integration
testing

Project work flow

Dynamic testing

Unit
testing

Code



13Software Engineering – © P. Baumann

Unit Testing

test cases

interface

local data structures

boundary conditions

independent paths

error handling paths

results
module

to be
tested

software
engineer

What users
really need

Requirements

Design

Acceptance
testing

System
testing

Integration
testing

Unit
testing

Code

14Software Engineering – © P. Baumann

Unit Testing

 Test unit = code that tests target

• Usually one or more test module/class

• In oo programs: target frequently one class

 Test case = test of an assertion (“design promise”) or particular feature

• “writing to then deleting an item from an empty stack yields an empty stack”:

isempty(pop(push(empty(), x)))

What users
really need

Requirements

Design

Acceptance
testing

System
testing

Integration
testing

Unit
testing

Code



15Software Engineering – © P. Baumann

Unit Test Environment

 Test driver
= dummy environment

for test class

 Test stub
= dummy methods

of classes used,
but not available

 Some unit testing frameworks

• C++: cppunit

• Java: JUnit

• server-side Java code
(web apps!): Cactus

• JavaScript: JSpec

Module

stub stub

driver

test cases

RESULTS

What users
really need

Requirements

Design

Acceptance
testing

System
testing

Integration
testing

Unit
testing

Code



16Software Engineering – © P. Baumann

Test Software is Software!

 All quality aspects apply, such as:

 Code quality

 Documentation

• „why is this test case important?“

 Automated handling via make etc.

 Appropriate structuring into directory hierarchies

• Separate feature code & test code

 Example: rasdaman src tree

17Software Engineering – © P. Baumann

 Integration testing
= test interactions among units

• Import/export type compatibility

• range errors

• representation

• …and many more

 Sample integration problems

• F1 calls F2(char[] s) -- F1 assumes array of size 10, F2 assumes size 8

• F1 calls F2(elapsed_time) -- F1 thinks in seconds, F2 thinks in milliseconds

• Strategies: Big-bang, incremental (top-down, bottom-up, sandwich)

Integration Testing

What users
really need

Requirements

Design

Acceptance
testing

System
testing

Integration
testing

Unit
testing

Code



18Software Engineering – © P. Baumann

Top-Down Integration

top module is tested with
stubs

A

B F G

stubs are replaced one at
a time, "depth first"

as new modules are integrated,
some subset of tests is re-run

C

D E

B

What users
really need

Requirements

Design

Acceptance
testing

System
testing

Integration
testing

Unit
testing

Code



19Software Engineering – © P. Baumann

Bottom-Up Integration

worker modules are grouped into
builds and integrated

C

D E

cluster

B

drivers are replaced one at a
time, "depth first"

A

B F G

What users
really need

Requirements

Design

Acceptance
testing

System
testing

Integration
testing

Unit
testing

Code



20Software Engineering – © P. Baumann

Sandwich Testing

Top modules are

tested with stubs

Worker modules are grouped into
builds and integrated

A

B

C

D E

F G

cluster

What users
really need

Requirements

Design

Acceptance
testing

System
testing

Integration
testing

Unit
testing

Code

21Software Engineering – © P. Baumann

System Testing

 System testing =
determine whether system meets requirements

• = integrated hardware and software

 Focus on use & interaction of system functionalities

• rather than details of implementations

 Should be carried out by a group independent of the code developers

What users
really need

Requirements

Design

Acceptance
testing

System
testing

Integration
testing

Unit
testing

Code

 Alpha testing: end users at developer’s site

 Beta testing: at end user site, w/o developer!



22Software Engineering – © P. Baumann

Acceptance Testing

 Goal: Get approval from customer

• try to structure it!

 be suresuresure that the demo works

 Customer may be tempted to demand more functionality
when getting exposed to final system

• Ideally: get test cases agreed already during analysis phase

• …will not work in practice, customer will feel tied

• At least: agree on schedule & criteria beforehand

 Best: prepare with stakeholders well in advance

What users
really need

Requirements

Design

Acceptance
testing

System
testing

Integration
testing

Unit
testing

Code



23Software Engineering – © P. Baumann

 Static testing

• Collects information about a software without executing it

• Reviews, walkthroughs, and inspections; static analysis;
formal verification; documentation testing

 Dynamic testing

• Collects information about a software with executing it

• Does the software behave correctly?

• In both development and target environments?

• White-box vs. black-box testing;
coverage analysis; memory leaks;
performance profiling

 Regression testing

Testing Methods
static

dynamic

regression



24Software Engineering – © P. Baumann

 Control flow analysis and data flow analysis

• Provide objective data, eg, for code reviews, project management, end of project statistics

• Extensively used for compiler optimization and software engineering

 Examples of errors that can be found:

• Unreachable statements

• Variables used before initialization

• Variables declared but never used

• Possible array bound violations

 Extensive tool support for deriving metrics

from source code

• e.g. up to 300 source code metrics

• Code construct counts, Complexity metrics, File metrics

Static Analysis

[Cantata++]

static

dynamic

regression



25Software Engineering – © P. Baumann

Formal Verification

 Given a model of a program and a property,
determine whether model satisfies property,
based on mathematics

• algebra, logic, …

• See earlier (invariants) and later!

 Examples

• Safety

• If the light for east-west is green, then the light for south-north should be red

• Liveness

• If a request occurs, there should be a response eventually in the future

static

dynamic

regression

26Software Engineering – © P. Baumann

static

dynamic

regression

 Check that all statements & conditions

have been executed at least once

 Look inside modules/classes

 Limitations

• Cannot catch omission errors
-- missing requirements?

• Cannot provide test oracles
-- expected output for an input?

White-Box (Glass-Box) Testing

Software
Apply input Observe output

Validate observed output



27Software Engineering – © P. Baumann

static

dynamic

regression
Black-Box = Spec-Based Testing

 No knowledge about code internals,

relying only on interface spec

 Limitations

• Specifications are not usually available

• Many companies still have only code,

there is no other document

compare

Actual
output

Program

Specification

Apply input

Expected
output

requirements

eventsinput

output



28Software Engineering – © P. Baumann

Coverage Analysis

 Coverage analysis = measuring how much of the code has been exercised

• identify unexecuted code structures

• remove dead or unwanted code

• add more test cases?

 Metrics include:

• Entry points

• Statements

• Conditions (loops! )

static

dynamic

regression

29Software Engineering – © P. Baumann

Coverage Analysis: Metrics

Statement Decision Path coverage

?

test cases?

? ?

static

dynamic

regression

30Software Engineering – © P. Baumann

Path Testing

 cyclomatic complexity of flow graph:

 V(G) = number of simple decisions + 1

• V(G) = number of enclosed areas + 1

 In this case, V(G) = ?

static

dynamic

regression



31Software Engineering – © P. Baumann

Path Testing

 derive independent paths: V(G) = 4  four paths

• Path 1: 1,2,3,6,7,8

• Path 2: 1,2,3,5,7,8

• Path 3: 1,2,4,7,8

• Path 4: 1,2,4,7,2,4,...7,8

 derive test cases to exercise these paths

1

2

3
4

5 6

7

8

static

dynamic

regression

32Software Engineering – © P. Baumann

Terminology: Cx

 C0 = every instruction

 C1 = every branch

 C2, C3 ~= every condition once true, once false

• Numbering historically grown, not systematic -- C1 & C2 not related!

 C4 = path coverage: every possible path taken

 Rule of thumb: 95% C0, 70% C1

• C2, C3 IMHO add no value, C4 often impossible

 Concurrent systems? External component impact?

33Software Engineering – © P. Baumann

Example: DO-178B

 FAA standard for requirements based

testing & code coverage analysis

 Levels according to severity of consequences:

• Level A: catastrophic

• Level B: dangerous/severe

• Level C: significant

• Level D: low impact

• Level E: no impact

…100% of:

• Modified cond. decision covg. +

branch/decision + statement

• Branch/decision + statement

• statement

34Software Engineering – © P. Baumann

Test Organization

 Tests should be self-sustaining

• create your own data,

• ...and clean up

• Expect nothing!

 Set up controlled enviroment

• data sets, files, environment variables, system configuration, ...

• excellent for repeatability of complex setup: virtual machines (eg,VMware box)

 Regression testing!

35Software Engineering – © P. Baumann

 Testing in maintenance phase: How to test modified / new code?

• Developing new tests = double work

• Cost factor: Development : maintenance = 1:3

 Regression test

= run tests, compare output

to same test on previous code version

• Diff on previous log output

• easy automatic testing

 Limitations

• Finds only deviations, cannot judge on error

• Only finds new deviations

• Only for fully automated tests

Regression Testing

actual
output

New program

Old program

Apply input

actual
output

compare:

actual output same as previous output?

static

dynamic

regression



36Software Engineering – © P. Baumann

 Simplicity

• Clear, easy to understand,
following code standards

 Decomposability

• Modules can be tested independently

 Controllability

• States & variables can be controlled

• tests can be automated and reproduced

 Observability

• Make status queryable: toString()

• Have class-internal checks & logging

 Stability

• Recovers well from failures

 Operability

• If well done right away,
testing will be less blocked by errors found

 Understandability

• All relevant information is documented,
up-to-date, and available



Create Testable Software!

37Software Engineering – © P. Baumann

 Pressman:

• Think about what you see

• Use tools to gain more insight

• Create regression tests when fixing the bug

 Testing is hostile -- „Make Test Like War!“

• be bad = imaginative on possible error situations

• best be developed NOT by (but in communication with) coder

• Common mistake: test only plausible input

• OWASP, Snyk; OSS Fuzz: ~25,000 bugs in 375 OS tools

Summary


https://owasp.org/www-project-dependency-check/
https://snyk.io/
https://github.com/google/oss-fuzz

38Software Engineering – © P. Baumann

Summary (contd.)

 Objective test strategy should achieve

“an acceptable level of confidence

at an acceptable level of cost”

 Tests are integral part of the software

• All quality statements apply!

• ~40% of overall coding effort ok

 “Testing is successful if the program fails” – Goodenough & Gerhart

 "Testers are customer advocates“ – n.n.



