
1Software Engineering – © P. BaumannSoftware Engineering – © P. Baumann

Documentation

Instructor: Peter Baumann

email: pbaumann@constructor.university

tel: -3178

office: room 88, Research 1

Credits:

Richard Clegg

"Real programmers don't document.

If it was hard to write,

it should be hard to understand."

2Software Engineering – © P. Baumann

Roadmap: Types of Documentation

 Internal documentation

• What: comments in your code

• Level of detail: local (particular statements, variables, …)

 External programmer documentation

• What: for other programmers who would work with your code

• Level of detail: global, implementation directed (module dependencies, interfaces,

anything else of interest);

where necessary: details (algorithms, data structures, restrictions, …)

 User documentation

• What: the manual for the poor fools who will be using your code

• Level of detail: global, usage directed

3Software Engineering – © P. Baumann

Internal (Inline) Documentation, or:

How to Write Good Comments

 Does your comment help your reader understand the code?

 Are you writing a comment just because you know that "comments are
good"?

 Is the comment something that the reader could easily work out for
themselves?

 Don't be afraid to add a reference instead of a comment for tricky things

 See history.js

4Software Engineering – © P. Baumann

Some Common Bad Comments

i= i+1; /* Add one to i */

for (i= 0; i < 1000; i++) { /* Tricky bit */

.

. Hundreds of lines of obscure uncommented code here

.

}

int x,y,q3,z4; /* Define some variables */

int main()

/* Main routine */

while (i < 7) { /*This comment carries on and on */

5Software Engineering – © P. Baumann

How Much To Comment?

 Just because comments are good doesn't mean that you should comment

every line

 Too many comments make your code hard to read

 Too few comments make your code hard to understand

 Comment only where you couldn't trivially understand what was going on

by looking at the code for a minute or so

6Software Engineering – © P. Baumann

What Should I Always Comment?

 Every file to say what it contains

 Every function – what input does it take and what does it return

• Preconditions

• Postconditions (eg, error return values)

 Every variable apart from "obvious" ones

• i,j,k for loops, FILE *fptr don't require a comment

• but int total; might

 Every struct/typedef

• unless it's really trivial

It does - not for the fptr,

but for the file purpose!

(see top)

7Software Engineering – © P. Baumann

Other Rules for Comments

 Comment if you do something "weird" that might fool other programmers

• In particular: "tricks", optimizations

• Aka natural penalty: the more tricky, the more to comment…

 If a comment is getting long consider referring to other text instead

• external documentation

 Don't let comments interfere with how the code looks

• e.g. make indentation hard to find

 Keep comments up to date!

• Outdated comments are worse than no comment at all: misleading

8Software Engineering – © P. Baumann

How Comments Can Make Code Worse

while (j < ARRAYLEN) {

printf ("J is %d\n", j);

for (i= 0; i < MAXLEN; i++) {

/* These comments only */

for (k= 0; k < KPOS; k++) {

/* Serve to break up */

printf ("%d %d\n",i,k);

/* the program */

}

/* And make the indentation */

}

/* Very hard for the programmer to see */

j++;

}

9Software Engineering – © P. Baumann

External (Programmer) Documentation

 Tells other programmers what your code does

 The aim is to allow another programmer to use & modify your code

without having to read &understand every line

 Here just ONE way of doing it – everyone has their own rules

• Most large companies have their own standards for doing this

 Global structure:

• Stage 1: overview & purpose

• Stage 2: the mechanics

• Stage 3: the gory details: globals

• Stage 4: the gory details: locals

10Software Engineering – © P. Baumann

External Documentation (Stage 1)

 What is your code supposed to do?

 How does your code work generally?

 What files does it read from or write to?

• Purpose only, not internals

 What does it assume about program input?

 What algorithms does it use?

11Software Engineering – © P. Baumann

External Documentation (Stage 2)

 Describe the general flow of your program

• no real need for a flowchart though

• Diagrams can help

 Explain any complex algorithms which your program uses

or refer to explanations elsewhere

• e.g. "I use vcomplexsort, see Knuth page 45 for details"

12Software Engineering – © P. Baumann

External Documentation (Stage 3)

 If you use multi-file programming explain what each file contains

 Explain any struct which is used a lot in your program

 explain (and justify) any global variables you have chosen to use

13Software Engineering – © P. Baumann

External Documentation (Stage 4)

 Describe every "major" function in program:

what arguments passed, what returned

• you decide what is "major" function

• …depends on level of detail you wish

 Consider functions doing "the real work"

• longest or most difficult

14Software Engineering – © P. Baumann

User Documentation

 This is documentation for the user of your program (aka "user manual“)

 Entire books have been written on the subject!

• Sometimes it is written before your code is even ready to be tested

• For highly structured and complex projects it is likely that you will have to adapt your

code to match the user manual

• It has to be written from the point of view of the end users of your program

• Many, many more considerations and guidelines not covered here…

15Software Engineering – © P. Baumann

Recap: Types of Documentation

 Internal documentation

• Inline comments in code

 External programmer documentation

• Separate doc (Word, github, …) about code

 User documentation

• Doc for end users: functionality, user interface, error messages, …

16Software Engineering – © P. Baumann

Appendix: Tool Support

 C++:

• Doxygen, doc++

 Java:

• Javadoc

 JavaScript:

• JSDoc, DocumentJS, ...

 General:

• doc-to-help: generate online help + word documentation from same source

