
Latest: HOWTO: Get tenure
Next: Writing CEK-style interpreters in Haskell
Prev: Boost productivity: Cripple your technology
Rand: Tips, tricks and software for (new) Apple users

What every computer science
major should know
[article index] [email me] [@mattmight] [rss]

Given the expansive growth in the field, it's become challenging to discern
what belongs in a modern computer science degree.

My own faculty is engaging in this debate, so I've coalesced my thoughts as
an answer to the question, "What should every computer science major
know?"

I've tried to answer this question as the conjunction of four concerns:

What should every student know to get a good job?

What should every student know to maintain lifelong employment?

What should every student know to enter graduate school?

What should every student know to benefit society?

My thoughts below factor into both general principles and specific
recommendations relevant to the modern computing landscape.

Computer science majors: feel free to use this as a self-study guide.

Please email or tweet with suggestions for addition and deletion.

Update: Thanks for the suggestions and reminders! I'll incorporate them as
I receive them to keep this a living document.

Portfolio versus resume

Having emerged from engineering and mathematics, computer science
programs take a resume-based approach to hiring off their graduates.

What every computer science major should know http://matt.might.net/articles/what-cs-majors-sh...

1 of 21 5/4/20, 3:40 PM



A resume says nothing of a programmer's ability.

Every computer science major should build a portfolio.

A portfolio could be as simple as a personal blog, with a post for each project
or accomplishment. A better portfolio would include per-project pages, and
publicly browsable code (hosted perhaps on github or Google code).

Contributions to open source should be linked and documented.

A code portfolio allows employers to directly judge ability.

GPAs and resumes do not.

Professors should design course projects to impress on portfolios, and
students, at the conclusion of each course, should take time to update them.

Examples

Edward Yang's web site.

Michael Bradshaw's web site.

Github is my resume.

Technical communication

Lone wolves in computer science are an endangered species.

Modern computer scientists must practice persuasively and clearly
communicating their ideas to non-programmers.

In smaller companies, whether or not a programmer can communicate her
ideas to management may make the difference between the company's
success and failure.

Unfortunately, this is not something fixed with the addition of a single class
(although a solid course in technical communication doesn't hurt).

More classes need to provide students the opportunity to present their work
and defend their ideas with oral presentations.

Specific recommendations

I would recommend that students master a presentation tool like
PowerPoint or (my favorite) Keynote. (Sorry, as much as I love them,
LaTeX-based presentation tools are just too static.)

For producing beautiful mathematical documentation, LaTeX has no equal.
All written assignments in technical courses should be submitted in LaTeX.

What every computer science major should know http://matt.might.net/articles/what-cs-majors-sh...

2 of 21 5/4/20, 3:40 PM



Recommended reading

Writing for Computer Science by Zobel.

Even a Geek Can Speak by Asher.

The LaTeX Companion.

The TeXbook by Knuth. (Warning: Experts only.)

Notes on Mathematical Writing.

Simon Peyton-Jones's advice on How to Give a Good Research Talk.

My advice on how to send and reply to email.

An engineering core

Computer science is not quite engineering.

But, it's close enough.

Computer scientists will find themselves working with engineers.

Computer scientists and traditional engineers need to speak the same
language--a language rooted in real analysis, linear algebra, probability and
physics.

Computer scientists ought to take physics through electromagnetism. But, to
do that, they'll need take up through multivariate calculus, (and differential
equations for good measure).

In constructing sound simulations, a command of probability and (often
times) linear algebra is invaluable. In interpreting results, there is no
substitute for a solid understanding of statistics.

Recommended reading

Calculus by Spivak.

All of Statistics: A Concise Course in Statistical Inference by
Wasserman.

The Unix philosophy

Computer scientists should be comfortable with and practiced in the Unix
philosophy of computing.

The Unix philosophy (as opposed to Unix itself) is one that emphasizes
linguistic abstraction and composition in order to effect computation.

In practice, this means becoming comfortable with the notion of command-

What every computer science major should know http://matt.might.net/articles/what-cs-majors-sh...

3 of 21 5/4/20, 3:40 PM



line computing, text-file configuration and IDE-less software development.

Specific recommendations

Given the prevalence of Unix systems, computer scientists today should be
fluent in basic Unix, including the ability to:

navigate and manipulate the filesystem;

compose processes with pipes;

comfortably edit a file with emacs and vim;

create, modify and execute a Makefile for a software project;

write simple shell scripts.

Students will reject the Unix philosophy unless they understand its power.
Thus, it's best to challenge students to complete useful tasks for which Unix
has a comparative advantage, such as:

Find the five folders in a given directory consuming the most space.

Report duplicate MP3s (by file contents, not file name) on a computer.

Take a list of names whose first and last names have been lower-cased,
and properly recapitalize them.

Find all words in English that have x as their second letter, and n as
their second-to-last.

Directly route your microphone input over the network to another
computer's speaker.

Replace all spaces in a filename with underscore for a given directory.

Report the last ten errant accesses to the web server coming from a
specific IP address.

Recommended reading

The Unix Programming Environment by Kernighan and Pike.

The Linux Programming Interface: A Linux and UNIX System
Programming Handbook by Kerrisk.

Unix Power Tools by Powers, Peek, O'Reilly and Loukides.

commandlinefu.

Linux Server Hacks.

The single Unix specification.

Systems administration

Some computer scientists sneer at systems administration as an "IT" task.

What every computer science major should know http://matt.might.net/articles/what-cs-majors-sh...

4 of 21 5/4/20, 3:40 PM



The thinking is that a computer scientist can teach herself how to do
anything a technician can do.

This is true. (In theory.)

Yet this attitude is misguided: computer scientists must be able to
competently and securely administer their own systems and networks.

Many tasks in software development are most efficiently executed without
passing through a systems administrator.

Specific recommendations

Every modern computer scientist should be able to:

Install and administer a Linux distribution.

Configure and compile the Linux kernel.

Troubleshoot a connection with dig, ping and traceroute.

Compile and configure a web server like apache.

Compile and configure a DNS daemon like bind.

Maintain a web site with a text editor.

Cut and crimp a network cable.

Recommended reading

UNIX and Linux System Administration Handbook by Nemeth,
Synder, Hein and Whaley.

Programming languages

Programming languages rise and fall with the solar cycle.

A programmer's career should not.

While it is important to teach languages relevant to employers, it is equally
important that students learn how to teach themselves new languages.

The best way to learn how to learn progamming languages is to learn
multiple programming languages and programming paradigms.

The difficulty of learning the nth language is half the difficulty of the (n-1)th.

Yet, to truly understand programming languages, one must implement one.
Ideally, every computer science major would take a compilers class. At a
minimum, every computer science major should implement an interpreter.

Specific languages

What every computer science major should know http://matt.might.net/articles/what-cs-majors-sh...

5 of 21 5/4/20, 3:40 PM



The following languages provide a reasonable mixture of paradigms and
practical applications:

Racket;

C;

JavaScript;

Squeak;

Java;

Standard ML;

Prolog;

Scala;

Haskell;

C++; and

Assembly.

Racket

Racket, as a full-featured dialect of Lisp, has an aggressively simple syntax.

For a small fraction of students, this syntax is an impediment.

To be blunt, if these students have a fundamental mental barrier to
accepting an alien syntactic regime even temporarily, they lack the mental
dexterity to survive a career in computer science.

Racket's powerful macro system and facilities for higher-order
programming thoroughly erase the line between data and code.

If taught correctly, Lisp liberates.

Recommended reading

How to Design Programs by Felleisen, Findler, Flatt and
Krishnamurthi.

The Racket Docs.

ANSI C

C is a terse and unforgiving abstraction of silicon.

C remains without rival in programming embedded systems.

Learning C imparts a deep understanding of the dominant von Neumann
architecture in a way that no other language can.

Given the intimate role poor C programming plays in the prevalence of the

What every computer science major should know http://matt.might.net/articles/what-cs-majors-sh...

6 of 21 5/4/20, 3:40 PM



buffer overflow security vulnerabilities, it is critical that programmers learn
how to program C properly.

Recommended reading

ANSI C by Kernighan and Ritchie.

JavaScript

JavaScript is a good representative of the semantic model popular in
dynamic, higher-order languages such as Python, Ruby and Perl.

As the native language of the web, its pragmatic advantages are unique.

Recommended reading

JavaScript: The Definitive Guide by Flanagan.

JavaScript: The Good Parts by Crockford.

Effective JavaScript: 68 Specific Ways to Harness the Power of
JavaScript by Herman.

Squeak

Squeak is a modern dialect of Smalltalk, purest of object-oriented languages.

It imparts the essence of "object-oriented."

Recommended reading

Introductions to Squeak

Java

Java will remain popular for too long to ignore it.

Recommended reading

Effective Java by Bloch.

Standard ML

Standard ML is a clean embodiment of the Hindley-Milner system.

The Hindley-Milner type system is one of the greatest (yet least-known)
achievements in modern computing.

Though exponential in complexity, type inference in Hindley-Milner is
always fast for programs of human interest.

What every computer science major should know http://matt.might.net/articles/what-cs-majors-sh...

7 of 21 5/4/20, 3:40 PM



The type system is rich enough to allow the expression of complex structural
invariants. It is so rich, in fact, that well-typed programs are often bug-free.

Recommended reading

ML for the Working Programmer by Paulson.

The Definition of Standard ML by Milner, Harper, MacQueen and
Tofte.

Prolog

Though niche in application, logic programming is an alternate paradigm
for computational thinking.

It's worth understanding logic programming for those instances where a
programmer may need to emulate it within another paradigm.

Another logic language worth learning is miniKanren. miniKanren stresses
pure (cut not allowed) logic programming. This constraint has evolved an
alternate style of logic programming called relational programming, and it
grants properties not typically enjoyed by Prolog programs.

Recommended reading

Learn Prolog Now!

Another tutorial.

miniKanren.

Scala

Scala is a well-designed fusion of functional and object-oriented
programming languages. Scala is what Java should have been.

Built atop the Java Virtual Machine, it is compatible with existing Java
codebases, and as such, it stands out as the most likely successor to Java.

Recommended reading

Programming in Scala by Odersky, Spoon and Venners.

Programming Scala by Wampler and Payne.

Haskell

Haskell is the crown jewel of the Hindley-Milner family of languages.

Fully exploiting laziness, Haskell comes closest to programming in pure
mathematics of any major programming language.

What every computer science major should know http://matt.might.net/articles/what-cs-majors-sh...

8 of 21 5/4/20, 3:40 PM



Recommended reading

Learn You a Haskell by Lipovaca.

Real World Haskell by O'Sullivan, Goerzen and Stewart.

ISO C++

C++ is a necessary evil.

But, since it must be taught, it must be taught in full.

In particular, computer science majors should leave with a grasp of even
template meta-programming.

Recommended reading

The C++ Programming Language by Stroustrup.

C++ Templates: The Complete Guide by Vandevoorde and Josuttis.

Programming Pearls by Bentley.

Assembly

Any assembly language will do.

Since x86 is popular, it might as well be that.

Learning compilers is the best way to learn assembly, since it gives the
computer scientist an intuitive sense of how high-level code will be
transformed.

Specific recommendations

Computer scientists should understand generative programming (macros);
lexical (and dynamic) scope; closures; continuations; higher-order
functions; dynamic dispatch; subtyping; modules and functors; and monads
as semantic concepts distinct from any specific syntax.

Recommended reading

Structure and Interpretation of Computer Programs by Abelson,
Sussman and Sussman.

Lisp in Small Pieces by Queinnec.

Discrete mathematics

Computer scientists must have a solid grasp of formal logic and of proof.

What every computer science major should know http://matt.might.net/articles/what-cs-majors-sh...

9 of 21 5/4/20, 3:40 PM



Proof by algebraic manipulation and by natural deduction engages the
reasoning common to routine programming tasks. Proof by induction
engages the reasoning used in the construction of recursive functions.

Computer scientists must be fluent in formal mathematical notation, and in
reasoning rigorously about the basic discrete structures: sets, tuples,
sequences, functions and power sets.

Specific recommendations

For computer scientists, it's important to cover reasoning about:

trees;

graphs;

formal languages; and

automata.

Students should learn enough number theory to study and implement
common cryptographic protocols.

Recommended reading

How to Prove It: A Structured Approach by Velleman.

How To Solve It by Polya.

Data structures and algorithms

Students should certainly see the common (or rare yet unreasonably
effective) data structures and algorithms.

But, more important than knowing a specific algorithm or data structure
(which is usually easy enough to look up), computer scientists must
understand how to design algorithms (e.g., greedy, dynamic strategies) and
how to span the gap between an algorithm in the ideal and the nitty-gritty of
its implementation.

Specific recommendations

At a minimum, computer scientists seeking stable long-run employment
should know all of the following:

hash tables;

linked lists;

trees;

binary search trees; and

directed and undirected graphs.

What every computer science major should know http://matt.might.net/articles/what-cs-majors-sh...

10 of 21 5/4/20, 3:40 PM



Computer scientists should be ready to implement or extend an algorithm
that operates on these data structures, including the ability to search for an
element, to add an element and to remove an element.

For completeness, computer scientists should know both the imperative and
functional versions of each algorithm.

Recommended reading

CLRS.

Any of the Art of Computer Programming series by Knuth.

Theory

A grasp of theory is a prerequisite to research in graduate school.

Theory is invaluable when it provides hard boundaries on a problem (or
when it provides a means of circumventing what initially appear to be hard
boundaries).

Computational complexity can legitimately claim to be one of the few truly
predictive theories in all of computer "science."

A computer scientist must know where the boundaries of tractability and
computability lie. To ignore these limits invites frustration in the best case,
and failure in the worst.

Specific recommendations

At the undergraduate level, theory should cover at least models of
computation and computational complexity.

Models of computation should cover finite-state automata, regular
languages (and regular expressions), pushdown automata, context-free
languages, formal grammars, Turing machines, the lambda calculus, and
undecidability.

At the undergraduate level, students should learn at least enough
complexity to understand the difference between P, NP, NP-Hard and NP-
Complete.

To avoid leaving the wrong impression, students should solve a few large
problems in NP by reduction to SAT and the use of modern SAT solvers.

Recommended reading

Introduction to the Theory of Computation by Sipser.

Computational Complexity by Papadimitriou.

What every computer science major should know http://matt.might.net/articles/what-cs-majors-sh...

11 of 21 5/4/20, 3:40 PM



Algorithms by Sedgewick and Wayne.

Introduction to Algorithms by Cormen, Leiserson, Rivest and Stein.

Architecture

There is no substitute for a solid understanding of computer architecture.

Computer scientists should understand a computer from the transistors up.

The understanding of architecture should encompass the standard levels of
abstraction: transistors, gates, adders, muxes, flip flops, ALUs, control units,
caches and RAM.

An understanding of the GPU model of high-performance computing will be
important for the foreseeable future.

Specific recommendations

A good understanding of caches, buses and hardware memory management
is essential to achieving good performance on modern systems.

To get a good grasp of machine architecture, students should design and
simulate a small CPU.

Recommended reading

nand2tetris, which constructs a computer from the ground up.

Computer Organization and Design by Patterson and Hennessy.

"What every programmer should know about memory" by Drepper.

Operating systems

Any sufficiently large program eventually becomes an operating system.

As such, computer scientists should be aware of how kernels handle system
calls, paging, scheduling, context-switching, filesystems and internal
resource management.

A good understanding of operating systems is secondary only to an
understanding of compilers and architecture for achieving performance.

Understanding operating systems (which I would interpret liberally to
include runtime systems) becomes especially important when programming
an embedded system without one.

Specific recommendations

What every computer science major should know http://matt.might.net/articles/what-cs-majors-sh...

12 of 21 5/4/20, 3:40 PM



It's important for students to get their hands dirty on a real operating
system. With Linux and virtualization, this is easier than ever before.

To get a better understanding of the kernel, students could:

print "hello world" during the boot process;

design their own scheduler;

modify the page-handling policy; and

create their own filesystem.

Recommended reading

Linux Kernel Development by Love.

Networking

Given the ubiquity of networks, computer scientists should have a firm
understanding of the network stack and routing protocols within a network.

The mechanics of building an efficient, reliable transmission protocol (like
TCP) on top of an unreliable transmission protocol (like IP) should not be
magic to a computer scientist. It should be core knowledge.

Computer scientists must understand the trade-offs involved in protocol
design--for example, when to choose TCP and when to choose UDP.
(Programmers need to understand the larger social implications for
congestion should they use UDP at large scales as well.)

Specific recommendations

Given the frequency with which the modern programmer encounters
network programming, it's helpful to know the protocols for existing
standards, such as:

802.3 and 802.11;

IPv4 and IPv6; and

DNS, SMTP and HTTP.

Computer scientists should understand exponential back off in packet
collision resolution and the additive-increase multiplicative-decrease
mechanism involved in congestion control.

Every computer scientist should implement the following:

an HTTP client and daemon;

a DNS resolver and server; and

a command-line SMTP mailer.

What every computer science major should know http://matt.might.net/articles/what-cs-majors-sh...

13 of 21 5/4/20, 3:40 PM



No student should ever pass an intro neworking class without sniffing their
instructor's Google query off wireshark.

It's probably going too far to require all students to implement a reliable
transmission protocol from scratch atop IP, but I can say that it was a
personally transformative experience for me as a student.

Recommended reading

Unix Network Programming by Stevens, Fenner and Rudoff.

Security

The sad truth of security is that the majority of security vulnerabilities come
from sloppy programming. The sadder truth is that many schools do a poor
job of training programmers to secure their code.

Computer scientists must be aware of the means by which a program can be
compromised.

They need to develop a sense of defensive programming--a mind for
thinking about how their own code might be attacked.

Security is the kind of training that is best distributed throughout the entire
curriculum: each discipline should warn students of its native
vulnerabilities.

Specific recommendations

At a minimum, every computer scientist needs to understand:

social engineering;

buffer overflows;

integer overflow;

code injection vulnerabilities;

race conditions; and

privilege confusion.

A few readers have pointed out that computer scientists also need to be
aware of basic IT security measures, such how to choose legitimately good
passwords and how to properly configure a firewall with iptables.

Recommended reading

Metasploit: The Penetration Tester's Guide by Kennedy, O'Gorman,
Kearns and Aharoni.

Security Engineering by Anderson.

What every computer science major should know http://matt.might.net/articles/what-cs-majors-sh...

14 of 21 5/4/20, 3:40 PM



Cryptography

Cryptography is what makes much of our digital lives possible.

Computer scientists should understand and be able to implement the
following concepts, as well as the common pitfalls in doing so:

symmetric-key cryptosystems;

public-key cryptosystems;

secure hash functions;

challenge-response authentication;

digital signature algorithms; and

threshold cryptosystems.

Since it's a common fault in implementations of cryptosystems, every
computer scientist should know how to acquire a sufficiently random
number for the task at hand.

At the very least, as nearly every data breach has shown, computer scientists
need to know how to salt and hash passwords for storage.

Specific recommendations

Every computer scientist should have the pleasure of breaking ciphertext
using pre-modern cryptosystems with hand-rolled statistical tools.

RSA is easy enough to implement that everyone should do it.

Every student should create their own digital certificate and set up https in
apache. (It's surprisingly arduous to do this.)

Student should also write a console web client that connects over SSL.

As strictly practical matters, computer scientists should know how to use
GPG; how to use public-key authentication for ssh; and how to encrypt a
directory or a hard disk.

Recommended reading

Cryptography Engineering by Ferguson, Schneier and Kohno.

Software testing

Software testing must be distributed throughout the entire curriculum.

A course on software engineering can cover the basic styles of testing, but
there's no substitute for practicing the art.

What every computer science major should know http://matt.might.net/articles/what-cs-majors-sh...

15 of 21 5/4/20, 3:40 PM



Students should be graded on the test cases they turn in.

I use test cases turned in by students against all other students.

Students don't seem to care much about developing defensive test cases, but
they unleash hell when it comes to sandbagging their classmates.

User experience design

Programmers too often write software for other programmers, or worse, for
themselves.

User interface design (or more broadly, user experience design) might be
the most underappreciated aspect of computer science.

There's a misconception, even among professors, that user experience is a
"soft" skill that can't be taught.

In reality, modern user experience design is anchored in empirically-
wrought principles from human factors engineering and industrial design.

If nothing else, computer scientists should know that interfaces need to
make the ease of executing any task proportional to the frequency of the task
multiplied by its importance.

As a practicality, every programmer should be comfortable with designing
usable web interfaces in HTML, CSS and JavaScript.

Recommended reading

Paul Graham's essay on Web 2.0.

"The Absolute Minimum Every Software Developer Absolutely,
Positively Must Know About Unicode and Character Sets" by Spolsky.

HTML and CSS: Design and Build Websites by Duckett.

JavaScript: The Definitive Guide by Flanagan.

Visualization

Good visualization is about rendering data in such a fashion that humans
perceive it as information. This is not an easy thing to do.

The modern world is a sea of data, and exploiting the local maxima of
human perception is key to making sense of it.

Recommended reading

The Visual Display of Quantitative Information by Tufte.

What every computer science major should know http://matt.might.net/articles/what-cs-majors-sh...

16 of 21 5/4/20, 3:40 PM



Parallelism

Parallelism is back, and uglier than ever.

The unfortunate truth is that harnessing parallelism requires deep
knowledge of architecture: multicore, caches, buses, GPUs, etc.

And, practice. Lots of practice.

Specific recommendations

It is not at all clear what the "final" answer on parallel programming is, but a
few domain-specific solutions have emerged.

For now, students should learn CUDA and OpenCL.

Threads are a flimsy abstraction for parallelism, particularly when caches
and cache coherency are involved. But, threads are popular and tricky, so
worth learning. Pthreads is a reasonably portable threads library to learn.

For anyone interested in large-scale parallelism, MPI is a prerequisite.

On the principles side, it does seem that map-reduce is enduring.

Software engineering

The principles in software engineering change about as fast as the
programming languages do.

A good, hands-on course in the practice of team software construction
provides a working knowledge of the pitfalls inherent in the endeavor.

It's been recommended by several readers that students break up into teams
of three, with the role of leader rotating through three different projects.

Learning how to attack and maneuver through a large existing codebase is a
skill most programmers will have to master, and it's one best learned in
school instead of on the job.

Specific recommendations

All students need to understand centralized version control systems like svn
and distributed version control systems like git.

A working knowlege of debugging tools like gdb and valgrind goes a long
way when they finally become necessary.

Recommended reading

What every computer science major should know http://matt.might.net/articles/what-cs-majors-sh...

17 of 21 5/4/20, 3:40 PM



Version Control by Example by Sink.

Formal methods

As the demands on secure, reliable software increase, formal methods may
one day end up as the only means for delivering it.

At present, formal modeling and verification of software remains
challenging, but progress in the field is steady: it gets easier every year.

There may even come a day within the lifetime of today's computer science
majors where formal software construction is an expected skill.

Every computer scientist should be at least moderately comfortable using
one theorem prover. (I don't think it matters which one.)

Learning to use a theorem prover immediately impacts coding style.

For example, one feels instinctively allergic to writing a match or switch
statement that doesn't cover all possibilities.

And, when writing recursive functions, users of theorem provers have a
strong urge to eliminate ill-foundedness.

Recommended reading

Software Foundations.

Graphics and simulation

There is no discipline more dominated by "clever" than graphics.

The field is driven toward, even defined by, the "good enough."

As such, there is no better way to teach clever programming or a solid
appreciation of optimizing effort than graphics and simulation.

Over half of the coding hacks I've learned came from my study of graphics.

Specific recommendations

Simple ray tracers can be constructed in under 100 lines of code.

It's good mental hygiene to work out the transformations necessary to
perform a perspective 3D projection in a wireframe 3D engine.

Data structures like BSP trees and algorithms like z-buffer rendering are
great examples of clever design.

What every computer science major should know http://matt.might.net/articles/what-cs-majors-sh...

18 of 21 5/4/20, 3:40 PM



In graphics and simulation, there are many more.

Recommended reading

Mathematics for 3D Game Programming and Computer Graphics by
Lengyel.

Robotics

Robotics may be one of the most engaging ways to teach introductory
programming.

Moreover, as the cost of robotics continues to fall, thresholds are being
passed which will enable a personal robotics revolution.

For those that can program, unimaginable degrees of personal physical
automation are on the horizon.

Related posts

Multitouch gesture control for a robot.

Artificial intelligence

If for no other reason than its outsized impact on the early history of
computing, computer scientists should study artificial intelligence.

While the original dream of intelligent machines seems far off, artificial
intelligence spurred a number of practical fields, such as machine learning,
data mining and natural language processing.

Recommended reading

Artificial Intelligence by Russell and Norvig.

Machine learning

Aside from its outstanding technical merits, the sheer number of job
openings for "relevance engineer," indicates that every computer scientist
should grasp the fundamentals of machine learning.

Machine learning doubly emphasizes the need for an understanding of
probability and statistics.

Specific recommendations

What every computer science major should know http://matt.might.net/articles/what-cs-majors-sh...

19 of 21 5/4/20, 3:40 PM



At the undergraduate level, core concepts should include Bayesian networks,
clustering and decision-tree learning.

Recommended reading

Machine Learning by Mitchell.

Databases

Databases are too common and too useful to ignore.

It's useful to understand the fundamental data structures and algorithms
that power a database engine, since programmers often enough
reimplement a database system within a larger software system.

Relational algebra and relational calculus stand out as exceptional success
stories in sub-Turing models of computation.

Unlike UML modeling, ER modeling seems to be a reasonable mechanism
for visualing encoding the design of and constraints upon a software artifact.

Specific recommendations

A computer scientist that can set up and operate a LAMP stack is one good
idea and a lot of hard work away from running their own company.

Recommended reading

SQL and Relational Theory by Date.

Non-specific reading recommendations

Gödel, Escher, Bach by Hofstadter.

Nick Black's advice for MS students.

What else?

My suggestions are limited by blind spots in my own knowledge.

What have I not listed here that should be included?

Related posts

HOWTO: Get tenure

What every computer science major should know http://matt.might.net/articles/what-cs-majors-sh...

20 of 21 5/4/20, 3:40 PM



Parsing BibTeX into S-Expressions, JSON, XML and BibTeX

PAANDA: An NDA for academics

College tips, tricks and hacks

Tips for defending a Ph.D.

HOWTO: Respond to peer reviews

12 resolutions for grad students

HOWTO: Peer review scientific work

Electric meat

Peer fortress: The scientific battlefield

The shape of your problem

6 tips for low-cost academic blogging

The illustrated guide to a Ph.D.

The CRAPL: An open source license for academia

Why peer reviewers should use TOR

Academic job hunt advice

[article index] [email me] [@mattmight] [rss]

Latest: HOWTO: Get tenure
Next: Writing CEK-style interpreters in Haskell
Prev: Boost productivity: Cripple your technology
Rand: Tips, tricks and software for (new) Apple users

What every computer science major should know http://matt.might.net/articles/what-cs-majors-sh...

21 of 21 5/4/20, 3:40 PM


