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Technical commiTTees

R ecent trends on big Earth-observing (EO) data lead 
to some questions that the Earth science commu-

nity needs to address. Are we experiencing a paradigm 
shift in Earth science research now? How can we better 
utilize the explosion of technology maturation to create 
new forms of EO data processing? Can we summarize 
the existing methodologies and technologies scaling to 
big EO data as a new field named earth data science? Big 
data technologies are being widely practiced in Earth 
sciences and remote sensing communities to support 
EO data access, processing, and knowledge discovery. 
The data-intensive scientific discovery, named the fourth 
paradigm, leads to data science in the big data era [1]. 
According to the definition by the U.S. National In-
stitute of Standards and Technology, the data science 
paradigm is the “extraction of actionable knowledge 
directly from data through a process of discovery, hy-
pothesis, and hypothesis testing” [2]. Earth data science 
is the art and science of applying the data science para-
digm to EO data.

Over the past decade, the EO data managed and pro-
cessed by information systems have increased from the 
terabyte level to the petabyte and exabyte levels. The 
rapid development of sensor and cyberinfrastructure 
technologies makes EO data, which are generated by 
global and local sensor systems and networks measur-
ing the state of Earth, an important part of big data. The 
data are not only bigger than before but they also have 
increased complexity due to their very special charac-
teristics of volume, variety, velocity, value, veracity, and 
variability. The big EO data means that capabilities of 
traditional data systems and computational methods 
are inadequate to deal with these characteristics. To-
day, in addition to the analysis of EO data only, Earth 
scientists are also using social and economic data to 

complement EO data to gain a better understanding of 
the social-economic-environmental systems. Infrastruc-
ture-based research is being leveraged to enable fast 
analysis of the data.

Earth data science will encompass various aspects 
of big EO data, including big data management (i.e., 
curation, discovery, and access to EO data); web and 
cloud-based processing of EO data; methods, tools, 
and best practices for big data analytics; applications 
of big EO data; and directions and trends of big EO 
data science. The time is ripe to rethink these aspects 
for realizing the potential of EO data and better sup-
porting interdisciplinary research in a collaborative 
environment. The mission of the IEEE Geoscience 
and Remote Sensing Society (GRSS) Earth Science 
Informatics (ESI) Technical Committee (TC) is to 
“advance the application of informatics to the geosci-
ences and remote sensing, to provide a venue for ESI 
professionals to exchange information and knowl-
edge, and to give technology advice to major nation-
al and international ESI initiatives.” Many aspects of 
Earth data science fall into the scope of the ESI TC.  
This article intends to identify the significant trends in 
computing, storage, and modeling infrastructures, data 
life cycle management, and big data analytics, along 
with the development of relevant standards that enable 
Earth data science (Figure 1). It then summarizes some 
ESI TC activities in the past year related to Earth data 
science and suggests plans for future engagement.

INFRASTRUCTURE
An infrastructure is an integrated information environ-
ment that connects distributed hardware and software 
resources together. It is built on the results of technolog-
ical developments and institutional efforts, and it en-
compasses various components from raw data capture 
to complex Earth system applications. In Earth informa-
tion infrastructures, Earth data are being collected by 
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distributed sensors, served by distributed geospatial data 
services, transformed by processing services and workflows, 
and consumed by smart clients [3]. From the aspect of or-
ganizational practices, significant efforts have been made 
that provide geospatial data and services around the world, 
including the Infrastructure for Spatial Information in the 
European Community [15], the Global Earth Observation 
System of Systems (GEOSS) [16], the Data Observation 
Network for Earth [17], the Geoprocessing Web [12], [18], 
the EarthCube [19], and the EarthServer [22]. For example, 
the EarthCube initiative is a community-governed effort to 
develop a cyberinfrastructure platform that supports Earth 
science data access, analysis, sharing, and visualization.

From the technological perspective, the recent develop-
ment of information and communication technologies has 
triggered a paradigm shift in computing, storage, and mod-
eling infrastructures (Figure 2). A variety of data models, 
computing methods, data storage solutions, and integrated 
modeling strategies have been developed and applied to 
Earth sciences. This paradigm shift has changed the way 
geospatial activities are being conducted. For example, Not 
Only Structured Query Language (NoSQL) database man-
agement systems (DBMSs) have been developed to compete 
with traditional relational DBMSs in managing geospatial 
data. In addition, array DBMSs have been developed to effi-
ciently store multidimensional raster data. While traditional 
data models like vector and raster are designed for data stor-
age, the recent MapReduce paradigm requires us to rethink 
the data model to better support the high performance com-
putation. The parallelization of geocomputation can be sup-
ported by hybrid parallel architectures integrating different 
parallel programming models, such as the Open Multipro-
cessing (OpenMP), the Message Passing Interface (MPI), and 
the general-purpose graphics process-
ing unit (GPGPU), and using the best 
of multicore hardware, graphics cards, 
and clusters [24]. The modeling infra-
structures have moved the focus from 
observations to data assimilation and 
simulation. A set of community prac-
tices for modeling frameworks have 
emerged, such as the Earth System 
Modeling Framework (ESMF), the 
Open Modeling Interface (OpenMI), 
the Common Component Architec-
ture (CCA), and the Model Web [21]. 
The modeling frameworks are leverag-
ing web technologies for publication, 
discovery, access, and  integration of 
model components and software.

The development of information 
infrastructures will contribute signifi-
cantly to geoscientists’ capabilities in 
answering the most daunting ques-
tions and enable complex Earth  science 
applications, such as long-term global 

climate change studies, higher resolution simulations and 
forecasting of hurricanes, and early warning of tsunamis. The 
infrastructures provide rich data sources, high performance 
computing power, and Earth system models, and they allow 
collaborative research by experts from multiple scientific do-
mains. They facilitate data utilization, information exchange, 
and knowledge production, and they help scientists and pub-
lic users understand fundamental scientific questions and 
 dynamic Earth system and environmental processes.

DATA LIFE CYCLE
Traditionally, Earth data products have been produced in 
siloed environments (e.g., scientific data centers) with pre-
defined processing steps. Before the products were available 
for public use, they would go through rigorous internal val-
idation at each step. There is now a rapidly growing number 
of geospatial tasks that need to be addressed immediately 
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by cooperative efforts from multiple domains and commu-
nities, which usually involve a huge volume of EO data from 
varying sources. These tasks would not be possible using tra-
ditional approaches in siloed environments. For example, 
the Global Forest Watch can look at 143 billion pixels of  
30 m each by taking one million central processing unit core 
hours on 10,000 computers using the Google Earth Engine 
[25]. As a result, there is an inevitable transition of conduct-
ing scientific activities from data centers to the web (i.e., 
cloud-based computing and web services) and volunteered 
information and processing environments. Web technolo-
gies such as cloud-based computing and web services are 
used for geospatial data analysis, such as the Google Earth 
Engine. Some data centers also adopt cloud storage and pro-
cessing. This transformation brings a paradigm shift in data 
life cycle management (Figure 3).

The Earth data life cycle refers to several sequential stages 
involved in the curation and sharing of Earth data for use 
and reuse. In a traditional context, the data life cycle, which 
has varying steps according to different organizations, usual-
ly includes creation, curation, preservation, transformation, 
analysis, distribution, access, and provenance. This should 
be redefined and expanded in a dynamic and distributed en-
vironment. Apart from the aforementioned legacy steps, the 
data life cycle adds data planning, long-term preservation of 
remote sensed data, and subsetting/disposal. In particular, it 
highlights the following issues:

◗◗ Provenance: In the information infrastructure environ-
ment where data are disseminated and processed widely 
and frequently in an unpredictable way, it is even more 

important than before to identify original data sources, 
trace workflows, update or reproduce scientific results, 
and evaluate the reliability and quality of geospatial 
data products [4], [23].

◗◗ Privacy: Some data and information such as national 
security-related information are private or sensitive, and 
they must be handled with caution [5]. The data should 
be filtered or preprocessed and given restrictive access. 
There should be a possibility to enforce a fine-grained 
access control policy to maintain the balance between 
flexible data access and privacy protection. Tools and 
procedures are needed to protect confidentiality, intel-
lectual property, and other legitimate requirements for 
privacy in an Earth data infrastructure.

◗◗ Security: Data security, an important component of 
an information infrastructure, includes data integrity, 
availability, and veracity. It should be guaranteed in 
the multiprovider and multitenant environment where 
Earth data are dynamically created and used and reused.

◗◗ Semantics: Semantic annotation of geospatial data 
across domains is very necessary for improving data 
interoperability and reusability [20]. Efficient reuse of 
published data in different discipline contexts needs 
clear data semantics that may be translated from one 
community to another in semantic reference systems [6].

ANALYTICS
While traditional data analysis is usually designed to solve 
individual problems, Earth data analytics targets compli-
cated tasks using approaches from informatics like cyber-
infrastructure and cloud computing. Earth data analytics 
relies on simultaneous applications of multiple data sourc-
es and computational methods in information infrastruc-
tures (Figure 4). Instead of underlining individual analyses 
or analysis steps (traditionally termed data analysis), the 
term data analytics emphasizes the entire methodological 
process of applying algorithms, methods, technologies, 
tools, or platforms to transform data into knowledge. 
Operating on large data sets, Earth science applications 
are heavily based on data analytics. Emerging advanced 
analytics techniques are developed including heteroge-
neous data integration solutions and data-in tensive com-
puting methods, and they are employed in EO data man-

agement [7], processing [8], [29], 
and visualization [9].

Data and algorithms from a single 
source are not capable of solving com-
plex problems; therefore, Earth data 
analytics frequently aggregate diverse 
data sources and run on parallel com-
puting nodes. Not limited to remote 
sensing data, data sources also in-
clude vector data, global positioning 
system trajectories, statistical data, 
and volunteered geographic data. 
These data sources can  complement 

Multiple Data Sources Computer and Computational Methods

Mathematics

Statistics

Descriptive Techniques

Predictive Models

Deep LearningSocial Media Data

Government Data

Trajectory Data

Remote Sensing Data

Vector Data

............

Information
Infrastructure

FIGURE 4. Using information infrastructures for big Earth data analytics.

Publication and Sharing

Long-Term PreservationDisposition

Planning Collection
Integration and
Transformation

Analysis

Provenance

Semantics

P
riv

ac
y 

an
d 

S
ec

ur
ity

FIGURE 3. A new paradigm in data life cycle.

Authorized licensed use limited to: Peter Baumann. Downloaded on March 23,2025 at 12:34:55 UTC from IEEE Xplore.  Restrictions apply. 



december 2016    ieee Geoscience and remote sensinG maGazine 87 

each other for enhanced data analysis and scientific discov-
ery. For example, a study on haze detection could use social 
media data to provide real-time haze information, trigger 
analysis processing on scientific observation data, or con-
firm results from scientific analysis [10]. Compared to ex-
isting algorithm-based approaches, such data analytics tend 
to take an infrastructure-based approach, and they run in 
high performance computing environments to speed up the 
process. In recent years, an increasing number of Earth data 
analytic methodologies have been borrowed from transfer 
learning, mathematics (e.g., fuzzy logic), artificial neural 
networks, and deep learning [26], [27].

STANDARDS
Interoperability allows proprietary Earth science infor-
mation systems developed by different vendors to freely 
exchange information from various sources and work co-
operatively to accomplish complex tasks. It has been identi-
fied as a fundamental issue when developing Earth science 
information systems [11] for remote sensing data access, 
archiving, and analysis. New sources of information for 
Earth sciences are identified every day. Many of these new 
sources also bring challenges for making the information 
suitable for scientific application. New technologies, such 
as cloud processing, sensor networks, and high velocity big 
data streaming, bring new opportunities for analysis and 
understanding of the new data. These technologies can be 
enhanced through the adoption of geospatial standards 
thereby providing services for all Earth science informa-
tion. Standardized open protocols and interfaces allow ac-
cess to distributed and diverse data and processing func-
tions in a common way [12]. The common data and service 
environment enabled by standards would greatly lower 
the complexity of problems caused by the heterogeneity of 
geospatial data and services [3], [28], [30]. A number of re-
search and applications have adopted geospatial standards 
for enhanced interoperability and the integration of geo-
spatial data and processing resources.

Earth data science emphasizes a better utilization of 
existing methodologies and technologies scaling to big 
EO data. This requires interoperability of data and servic-
es more than ever so that efficient information extraction 
and knowledge discovery from heterogeneous sources can 
be achieved. This can be achieved through the widespread 
adoption and implementation of community-developed 
standards. The standards being developed by the Interna-
tional Organization for Standardization (ISO), the Open 
Geospatial Consortium (OGC), the World Wide Web Con-
sortium, and the IEEE Standards Association (IEEE-SA) are 
all vital to achieving this goal. The IEEE GRSS ESI TC, along 
with other organizations such as the Research Data Alli-
ance, play an active role in ISO TC 211, OGC, and IEEE-
SA and are coordinating to advance the state of open stan-
dards for geosciences and remote sensing. The expertise of 
the GRSS membership can play an important role in the 
development and promotion of Earth data standards.

ESI TC ACTIVITIES
The goal of the ESI TC is to advance the research, technol-
ogy, and applications of informatics to geosciences and 
remote sensing. A series of productive activities have been 
conducted in recent years [13], [14]. The ESI TC will contin-
ue its role in supporting and promoting the development 
of Earth data science. The ESI TC sponsored two invited 
sessions at the IEEE International Geoscience and Remote 
Sensing Symposium in July 2016 (please see http://www 
.igarss2016.com/). The first session, titled “Earth Observing 
Data Science,” provided a platform for domain experts from 
different disciplines to exchange their ideas and report their 
latest practices on handling EO data. The second session 
was a joint ESI TC and OGC session titled “Advancing In-
teroperability for Geoscience Information Systems,” which 
presented the most exciting developments coming from 
innovative hands-on development processes such as OGC 
Testbeds and GEOSS Architecture Implementation Pilots. 
Considering many ESI TC members have rich experiences 
of applying geoscience and remote sensing technologies 
to agricultural sustainability, environmental research, and 
natural resource conservation, the ESI TC also works closely 
with agriculture sectors, and it is coorganizing the interna-
tional conference series on Agro-Geoinformatics. For Agro-
Geoinformatics 2015, more than one hundred participants 
joined the conference in Istanbul, Turkey, on 20–24 July 
2015. The fifth international conference on Agro-Geoin-
formatics (Agro-Geoinformatics 2016) was held success-
fully in Tianjin, China, on 18–20 July 2016 (see http://www 
. agro-geoinformatics.org/).

The ESI TC also focuses on nurturing young profession-
als who hold the key to the future development of geosci-
ence and remote sensing. The ESI TC has been supporting 
the International Geoinformatics Summer School series 
in the State Key Laboratory of Information Engineering in 
Surveying, Mapping, and Remote Sensing at Wuhan Uni-
versity, China. The summer school is held every year to 
attract young students to advanced studies and training in 
geoinformatics. It links students, young professionals, and 
experienced scholars together in lectures, lab exercises, 
field trips, and social events. In 2015, the ESI TC coorga-
nized successfully the 2015 International Geoinformatics 
Summer School at Wuhan University (4–14 June 2015). A 
total of 135 participants from seven countries joined the 
summer school. In the summer school, the ESI TC devel-
oped a course, “Spatial-Temporal Big Data Analytics and 
Data Science,” which provided an introduction to data sci-
ence and some technologies and approaches for unleash-
ing the power of big data. The ESI TC continued to support 
the 2016 Geoinformatics Summer School, held at Wuhan 
University on 19–30 June. (For further information, visit 
http://www.lmars.whu.edu.cn/geosummerschool/.)

The ESI TC also takes an active part in the geospatial 
standards development through the ISO TC 211—Geo-
graphic Information and the Open Geospatial Consor-
tium. Khalsa and Deng are providing standards expertise 
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to the  International Spaceborne Imaging Spectroscopy TC 
in OGC and ISO/TC 211/Working Group 6. Baumann is 
the editor of the OGC Web Coverage Service, and he is 
the initiator and coeditor of ISO SQL/Multi-Dimensional 
Arrays. There are ongoing opportunities for GRSS mem-
bers to contribute their expertise to standards develop-
ment activities. These include serving as subject matter 
experts in the review of proposed new standards, lending 
their opinions and experience to help improve existing 
standards, or identifying areas of their work that could 
benefit from standardization.

To learn more or participate in the ESI TC, contact the 
chairs, Peng Yue, Rahul Ramachandran, and Peter Bau-
mann (pyue@whu.edu.cn, rahul.ramachandran@nasa.gov, 
p.baumann@jacobs-university.de) and join the IEEE GRSS 
ESI TC at http://www.grss-ieee.org/join-esi-tc/.
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