
Location and Processing Aware Datacube Caching
Veranika Liaukevich

∗

Google Inc.

Montreal, Canada

liaukevich@gmail.com

Dimitar Mišev

Jacobs University

Bremen, Germany

d.misev@jacobs-university.de

Peter Baumann

Jacobs University

Bremen, Germany

p.baumann@jacobs-university.de

Vlad Merticariu

Jacobs University

Bremen, Germany

v.merticariu@jacobs-university.de

ABSTRACT
Array databases are used to manage and query large N-dimensional

arrays, such as sensor data, simulation models and imagery, as

well as various time-series. Modern database systems and database

applications make extensive use of caching techniques to improve

performance. Research on array databases on the other hand has

not explored the potential benefits of caching in query processing

on big arrays. In this work we propose a design for a content-aware

cache for array databases which allows to reuse results of previously

evaluated queries. Besides identical query matching, our method

also takes into account spatially overlapping queries and queries

with common subexpressions. We evaluate performance of the query

cache implementation by varying data and query parameters and

show that it decreases query execution time by up to 93%, with a

potential for even higher savings with increasing query complexity.

CCS CONCEPTS
• Information systems→ Database management system en-
gines; Database query processing; Query optimization;

KEYWORDS
array databases, query caching, datacubes

ACM Reference format:
Veranika Liaukevich, Dimitar Mišev, Peter Baumann, and Vlad Merticariu.

2017. Location and Processing Aware Datacube Caching. In Proceedings of
29th International Conference on Scientific and Statistical Database Manage-
ment, Chicago, Illinois, USA, June 27 - June 29 2017 (SSDBM2017), 6 pages.
https://doi.org/10.475/123_4

1 INTRODUCTION
Large multi-dimensional arrays of data appear in many areas of

science and engineering as natural representation for sensor data,

images and image time-series, statistics data and simulation results.

The quest for achieving flexible, scalable query support on this

∗
research done while at Jacobs University

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SSDBM2017, June 27 - June 29 2017, Chicago, Illinois, USA
© 2017 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06. . . $15.00

https://doi.org/10.1145/3085504.3085539

information category has led to the development of a new type of

database management system (DBMS), so-called array databases.

Based on query languages offering declarative array operators such

systems allow to store and process array data efficiently while allow-

ing for effective optimizations as well as parallel query evaluation.

The field was pioneered by rasdaman [4], with more systems follow-

ing in the meantime: Oracle GeoRaster [7], SciQL [14], SciDB [22],

PostGIS Raster [18], EXTASCID [6], etc.

A Web map service where users retrieve map images of a speci-

fied geographic region is a common application for array DBMS.

Requests are typically generated through a point-and-click interface

and internally transformed into queries sent to the server. After

a map image is retrieved, users typically zoom in/out or pan to

adjacent areas. In the latter case, the server evaluates the same

query over different regions. This presents an optimization poten-

tial: when the user does not completely leave the previous area,

results of previous query executions could be reused in evaluation

of subsequent spatially overlapping queries. Queries with common
subexpressions present another possibility for intelligent reuse of

previous results.Would the evaluation result of such subexpressions

be stored then these could be reused for faster overal evaluation.

These are all cases of caching, which is a popular and effective

approach to avoid costly recomputations and improve database

application performance.

In this work we propose a model of an in-memory array query

cache, implement it in the rasdaman Array DBMS, and show evalu-

ation results. We describe the cache capabilities, cache invalidation,

and cache entries reuse. A relatively rare feature of our cache model

is that it stores in main memory intermediate results of the array

query execution, as it was proposed by Zanfaly et. al. in [9] for con-

ventional databases. Our array cache component allows to reuse

partial results of previous queries in the case when the current

query spatially overlaps with them. To the best of our knowledge

the proposed model is the first one to exploit this relation between

queries for optimization purposes.

2 BACKGROUND AND RELATEDWORK
The idea of caching is widely used in various ways. On a database

server it can be a simple cache buffer for reducing the number of disk

I/Os or a request cache which stores results of previous requests,

thereby reducing computational costs [8]. If it is not possible or

not desirable to alter the database server itself, a middle-tier proxy

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3085504.3085539&domain=pdf&date_stamp=2017-06-27

SSDBM2017, June 27 - June 29 2017, Chicago, Illinois, USA Liaukevich et al.

server can be introduced. which forwards incoming queries to the

database server while caching results coming back [2, 16].

Caching is used by client-side applications as well, in this case it

can significantly reduce network traffic between the client and the

server. Some of these applications, which use client-side caching,

can predict user behaviour and issue queries to the database in a

background process before their results are explicitly requested

by the user [15]; on the downside, all clients need to employ a

cache as opposed to server-side caching where only one centrally

maintained cache exists.

Query caching for relational databases is well investigated – see,

e.g., [8]. In [21], full results of queries evaluation are kept in cache,

but caching of intermediate results aiming to refine this brute-force

approach of "materialize all" has been studied as well. Zanfaly et

al. [9] propose to put into the cache results of each intermediate

operation required for query evaluation so that queries containing

common subexpressions can potentially benefit from the results of

previous requests. In [11] the authors propose an automated cost-

based selection of which intermediate results should be cached, with

more fine-grained control possible through manually specifying in

the configuration file the queries that should be cached. In addition,

caching of query execution plans has been investigated in [3]

Research has also been published on caching for knowledge

bases [1], XML [17], and graph databases [12]. To the best of

our knowledge, however, no corresponding work exists for array

databases as we propose it.

3 RASDAMAN QUERY PROCESSING
Before explaining the query caching architecture, we briefly de-

scribe the data and query model of rasdaman [5]. Multidimensional

arrays are the central data type; each array has a domain that indi-

cates its dimensionality, and the lower and upper bounds of each

axis. The array elements are typical atomic values (boolean, inte-

ger, floating-point), or composite of several atomic components.

On storage, the multi-dimensional arrays are partitioned into sub-

arrays called tiles [13]. A tile is the unit of disk access during the

query evaluation process [23]. In this way, the engine efficiently

scales to support processing on arrays of unlimited sizes.

3.1 Operations Overview
Globally, the rasdaman query language (rasql) resembles SQL in

that it operates on sets. A number of array operations is built into

rasql which is based on Array Algebra, a minimal, orthogonal alge-

braic framework [4, 5]. An operation typically takes one or more

arrays/scalars as its arguments and produces a new array or a scalar.

Following is a brief overview of the operations important for our

discussion [20]. Notably, all of these can be expressed by some

combination of MARRAY and the CONDENSE operations.

Geometric operations reduce or change the array’s domain with-

out changing the array cell values. Each dimension can be trimmed
to a smaller extent, or sliced (removed) at a certain index.

Example. C[0:9,-1:5], C[0,*:*].
Induced operations apply a function or an operation, to each cell

of the argument arrays; the domain remains unchanged.

Example. log(C+1), (C+D)/2, -B.

Figure 1: Sample rasdaman query tree.

Case statement allows conditional evaluation of each array cell.

Example. CASE WHEN C > 128 THEN 0 ELSE C END.
Array constructor creates an array with a given domain where

the value of each cell is given by a coordinate-dependent expression:

Example. MARRAY x IN [1:5,1:5] VALUES x[0]+1.
Array condenser aggregate an array into a single scalar.

Example. CONDENSE + OVER x in sdom(C) USING C[x[0],x[1]].
Condense functions are array condenser shorthands.

Example. max_cells(C).
Format encoding and decoding allows to export and import data

in common formats.

Example. encode(C,"tiff").

3.2 Query Evaluation
An incoming query is parsed into an internal query tree structure,

which is then checked for correctness, optimized and evaluated.

Figure 1 shows the query tree corresponding to SELECT x[0:10]>0
FROM data AS x. The result of this query is a boolean array of

domain [0:10], such that each cell is true if the corresponding

cell of the array data is greater than zero, or false otherwise.

Simplified, the query evaluation is carried out as follows: while

the stream input is not empty, the OperationIterator gets the

next array from the MDDAccess node, passes it to the operation tree

for evaluation and returns the result. The operation tree consists of

operation nodes which accept input arguments, possibly call their

children nodes, process the data and return results. The caching

component is able to cache evaluation results of any subtree of the

query operation tree.

4 CACHE DESIGN
We base our cache work on Zanfaly et al. [9] who propose to cache

all intermediate results obtained during query execution.

4.1 Common Subexpressions
Consider these (partial) queries:

A: (x.nir-x.red) / (x.nir+x.red)
B: ((x.nir-x.red) / (x.nir+x.red)) > 0.5

Query A computes the Normalized Difference Vegetation Index

(NDVI) values for each cell of x, B computes a boolean array with

Location and Processing Aware Datacube Caching SSDBM2017, June 27 - June 29 2017, Chicago, Illinois, USA

a) b)

Figure 2: Sample spatially overlapping queries A, B, and C.
(Images: http://standards.rasdaman.com).

true values where the NDVI is greater than 0.5, thereby filtering

the cells that indicate dense vegetation. These two queries share

the common subexpression "(x.nir-x.red) / (x.nir+x.red)"
(modulo consistent variable renaming). One of the requirements

to design for our cache component is that cached results of query

A should be reused during the evaluation of the query B, so that

NDVI values are not computed twice.

4.2 Tiling on Cached Results
Most often query processing is done on array subsets rather than

whole arrays. E.g, a map application typically requests the map of

a region of interest, not the whole globe. The two main actions in

map applications, panning and zooming, usually lead to spatially

overlapping queries. On Figure 2a the user computes NDVI over an

areaA and then moves to the partially overlapping area B. Figure 2b
illustrates another case: first, the user requests NDVI over A, then
zooms in over the area C such that C ⊂ A.

For such use-cases, it makes sense to tile cached results with

the same tiling scheme as the query result, which can be predicted

deterministically depending on the operation and tiling schemes of

its arguments. For example, suppose we have 2D arrays A and B: A
is tiled vertically, whereas B is tiled horizontally (Figures 3a and 3c).

Unary induced operations preserve the tiling scheme in the result

(Figure 3b). The tiles produced by binary induced operations are

computed as intersections of the input tiles (Figure 3d).

a) b) c) d)

Figure 3: Tiling schemes of induced operations results

During the evaluation process each node in a operation tree

needs to compute the result only for tiles, which were not found in

the cache. However, it is sometimes not possible to introduce tiling

for query evaluation results; the result is cached as a single tile or

scalar value in such a case. Condensers, for example, produce scalar

results, and the MARRAY operator constructs a brand new array.

4.3 Cache Record Identification
We discuss cache record identification using the following conven-

tion. R denotes a cache record; CR is a set of cache records; Q (R)
is the query which yielded the record R; A(R) is the list of argu-
ments used byQ (R); and dom(R) is the domain of R. A cache record

identifier id (R) consists of three elements: a modified query string

idQ (Q (R)), variable bindings list idV (A(R)), and the domain of the

record.

id (R) needs to uniquely identify cache records, as well as allow

to find and recombine cache records with freshly computed data.

Such properties allow to find cache records which are tiles of results

of a given query. Method cache.getTiles(Query, Domain, Args)

returns a subset of cache records setCR for a given query, arguments

and domain of interest:

Rc = cache.getTiles(Query, Domain, Args)

= {Ri : Ri ∈ CR ∧ idQ (Q (Ri)) = idQ (Query)

∧ idV (Q (Ri)) = idV (Args) ∧ dom(Ri) ∩ Domain , ∅}

A variable binding list idV (A(R)) is a list of varname/OID pairs,

where varname is the name of a variable used in Q (R) and OID is

the object id substituted for the variable. It is needed in the cache

record identifier in order to distinguish multiple results of the same

query. For example, let Q be C + D, where C contains one array of

OID 123, and D has two arrays having OIDs 78 and 90. Q will yield

two results with the following variable bindings:

idV (R1) = {C = 123,D = 78}, idV (R2) = {C = 123,D = 90}

The query string itself cannot be directly used for identifica-

tion as it makes the identifiers "too" unique and does not work

for spatially overlapping queries. For this reason we use a modi-
fied query string idQ (Q (R)). Consider the two separate queries, A:
C[0:4]+2*C and B: C[0:9]+2. The result ofA is a part of B’s result.
However, with a naive approach to idQ in this case id (R1) , id (R2).
Therefore, it is necessary to eliminate the information about the

accessed domain from the query identifier while preserving its

uniqueness, resulting in idQ (Q).

4.4 Cache Reuse
Cache reuse is possible for queries with tiled results, namely sub-

setting and induced operations. Furthermore, marray constructor
results can be reused for queries with the same values clause, but

operating on some intersecting domain. For many operations, how-

ever, the result depends on the whole array, so reuse is possible

only for exactly matching queries. One example is format encoding.

4.5 Cache Invalidation
It is important to clear all records from the cache which are not valid

after the corresponding base data have been updated in the data-

base. This includes DELETE and UPDATE queries, whereas INSERT
and SELECT INTO require no action as they create new arrays.

Suppose there are several cache records resulting from a query. If

some region of that array gets updated only some of the records

become invalid. Unfortunately, it is not always possible to deter-

mine whether a certain region of an array was used to compute the

cache record or not. For example, assume data and index being

2-D collections, and cache record R is the result of query Q :

http://standards.rasdaman.com

SSDBM2017, June 27 - June 29 2017, Chicago, Illinois, USA Liaukevich et al.

MARRAY x IN sdom(index) VALUES data[index[x[0],x[1]]]

InQ , cell values of index arrays are used to index the data data. If a
region of the array in data is updated, there is no way to determine

statically (i.e. without inspection of index values) whether this

update changes the validity of R or not. As a result, in presence

of complicated addressing schemes we prophylactically invalidate

cache records whenever one of its arguments has changed.

We call invalidation policy of a cache record the decision whether
the record should be invalidated whenever its argument object was

updated ("invalidation by object") or it should be updated whenever

a certain region of the argument object was updated ("invalidation

by region"). Invalidation policy is a property of a cache record and

it depends on the query which has produced the record.

4.6 Cache Rules
Storing all intermediate evaluation results in the shared memory

is expensive. Considering that in most use cases only a fraction of

these stored results will be reused, it is useful to allow database

administrators to specify patterns (cache rules) for query subexpres-
sions which should be put into the cache. A cache rule consists of a

query pattern and an arguments rule variables binding list. In query
patterns an underscore ’_’ matches any expression. Examples:

• ’_’: Matches any query

• ’log(x)’: Matches only ’log(x)’
• ’log(_)’: Matches ’log(x)’, ’log(x + log(y))’, but not
’(log(x) + log(y))’
• ’(_ + _)’: Matches ’(x + (y * z))’, ’(log(x) +

log(y))’, but not ’(x * (y + z))’

The arguments rule restricts which results (tuples) should be cached.
Suppose C has two arrays with OIDs 123 and 456 and collection D

has two arrays with OIDs 78 and 90; the query C+D will yield four

results, one for each pair of objects from C and D. Examples:

• arguments rule {} matches all four results of the query;

• {C=123} matches two results of the query;

• {C=123, D=123} does not match any of results.

5 PERFORMANCE EVALUATION
5.1 Fine-grained Evaluation
First, we compared query evaluation performance with enabled

and disabled caching component. The experiment was done on a

10950x5475 RGB image of 171 MB, partitioned into 1095x1095 tiles

of 3.6 MB each. The machine had 6 GB RAM, 128 GB SSD, and

two 2 GHz dual-core CPUs. We ran the same set of queries with

different cache memory limits to achieve different cache hit rates,

from 10% to 100% hit rate (i.e. all data fits in cache).

hit rate x x.red log(x.red+1)

0% (base) 85.74 ms 116.45 ms 262.94 ms

10% (+14.8%) (+0.6%) (+5%)
50% (−33.3%) (−17.9%) (−15.6%)
90% (−73.8%) (−65.9%) (−66.5%)
100% (−82.5%) (−86.7%) (−93.7%)

Table 1: Mean processing times with varying cache hit rate

In all these setups we tested three queries for induced operations.

Each query requested a random 1000x1000 region of the input data,

so that each query computation involves 1, 2 or 4 tiles.

• x[...]: simple data retrieval query.

• x.red[...]: extracting red channel.

• log(x.red+1)[...]: complex induced operation.

During the experiments, for each setup we issued 1000 requests

and calculated the mean of server-side processing time. Table 1 and

Figure 4 show these results.

0 20 40 60 80 100

0

50

100

150

200

250

300

Cache hit rate (%)

P
r
o
c
e
s
s
i
n
g
t
i
m
e
(
m
s
)

x

x.red

log(x.red+1)

Figure 4: Mean processing times with varying cache hit rate

Caching has its own cost (computing the result tiling schemes

as described in Section 4.4, shared memory management, creat-

ing cache index entries, etc.); we see this reflected in the perfor-

mance drop for experiments with 10% hit rate. Query evaluation

speedup decreases as cache hit rate increases, which is also as ex-

pected. We also observe that the more complex query is cached,

the greater query evaluation speedup is achieved: for simple data

retrieval queries we got ≈ 82.5% speedup, but up to ≈ 93.7% for

time-consuming logarithm computation.

5.2 System Evaluation
We have then evaluated the cache in a more real-life setting, com-

paring the design in this paper which was implemented in ras-

daman, with SciDB, another major array DBMS. The systems were

installed with their default configurations on a single machine

(Table 2 shows the specs), and only the caching parameters were

modified as needed for the benchmark.

OS Ubuntu 14.04.4 Trusty

CPU 2 x Intel Xeon E5-2609 v3 (12 cores @ 1.90 GHz)

RAM 4 x 16 GB 2133 MHz

Disk 3TB 7200 RPM, read 193 MB/s, write 162 MB/s

Table 2: Benchmark machine specification.

SciDB offers two parameters to control caching [19]:

Location and Processing Aware Datacube Caching SSDBM2017, June 27 - June 29 2017, Chicago, Illinois, USA

mem-array-threshold Maximum size in MB of temporary

data to cache in memory before writing to temporary disk

files. Default: 1024 MB.

smgr-cache-size Size of memory in MB allocated to the

shared cache of array chunks. The cache is used only for

the chunks belonging to persistent arrays. Default: 256 MB.

It is not clear which one corresponds more to the caching solution

outlined in this paper, so the cache size was equally divided to both

in the benchmarks.

In rasdaman the maximum cache size can be set in the server

configuration file rasmgr.conf with the command define cache
-size S, where S can be expressed as percent of all available mem-

ory (e.g. 50%), or absolute amount in bytes, MB or GB.

It would be ideal to use real data (e.g. Landsat 8), however it

proved very difficult to insert TIFF files into SciDB which natively

only supports binary and CSV encoded data. For this reason we

decided to generate a random 2D array of double values with total

size of 1GB as test data. In both systems the data was inserted with

tile sizes of 16MB (1414 x 1414 x 8 bytes).

The benchmark consisted of several sessions of different queries.

Each session was started cold – services were restarted and the OS

cache was cleared with echo 3 > /proc/sys/vm/drop_caches.
However, the queries within a session were run hot in order to

measure the impact of caching. Queries were executed serially, so

that benchmark runs are deterministic and repeatable. In all queries

the final result is an aggregation (typically the minimum value); we

chose to do this as retrieving the whole array on client side was up

to 10 times slower in SciDB than in rasdaman, which would greatly

skew the benchmark results.

5.2.1 Web Map Service. This session emulates a Web Map Ser-

vice that automatically generates queries to select, scale and encode

the map that is currently in view at a certain zoom level. Usage of

map services typically include zooming in an out over overlapping

areas, and presents a good case for cache application.

0 .5 1.0 1.5 2.0 2.5 3.0

Cache size (GB)

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

P
ro

ce
ss

in
g

ti
m

e
(m

s)

rasdaman scidb

Figure 5: Sliding a subset window of size 4000x4000 from left
to right. The execution time is a total of 10 queries with each
successive querymoving the window 500 pixels to the right.

We ran four type of sessions: panning from left to right, panning

diagonally from lower left to upper right, zooming in (selecting a

smaller and smaller region), and zooming out. Figure 5 shows the

benchmark results for the left to right panning queries; the graphs

for the others are very similar and have been left out. As can be

noticed both systems benefit from caching up to a certain cache

size, after which more cache size does not entail benefit (500MB for

rasdaman, 1GB for SciDB).

5.2.2 Repeating Unary Operations. In this session a particular

unary operation is chosen, and each successive query applies it

one more time than the previous query. For example, for the cosine

function the following queries are executed: cos (A), cos (cos (A)),
etc.

0GB .5GB 1.0GB 1.5GB 2.0GB 2.5GB 3.0GB

Cache size (GB)

20000

30000

40000

50000

60000

70000

80000

P
ro

ce
ss

in
g

ti
m

e
(m

s)
rasdaman scidb

Figure 6: Repeatedly applying a cosine operation on the dou-
ble values of a 1GBmatrix. The graph shows an aggregate of
10 queries, where the first one just loads the array, and the
last one applies cosine 9 times.

In theory the cache would save the cosine result of a query and

the next query would only need to apply one cosine operation on

the saved result. This is exactly what can be noticed in the case of

rasdaman on Figure 6: as soon as the maximum cache size is greater

than 1GB, the results can be fully cached and processing time stays

linear from one query to the next.

5.2.3 Repeating Binary Operations. Similarly to the previous

benchmark case, here the caching of multiple binary operations

(comparison, arithmetic, logical) is covered. Figure 7 shows the

aggregated processing times of 10 queries, where the first query has

a single operation comparing every value of the array to a random

number, i.e.A = 1, the second then adds onemore comparison to the

first case, e.g. A = 1 and A = 8, and so on. Similarly to the previous

case with the unary operations, the cache shows significant positive

impact on the performance.

Further, on Figure 8 the measured execution times of each query

per varying cache sizes is shown. In this case the dotted lines

represent the varying cache sizes. As can be expected, when the

cache is disabled (0GB), the runtime of each query increases linearly.

With .5 and 1GB cache sizes, the runtime of each query is constant,

SSDBM2017, June 27 - June 29 2017, Chicago, Illinois, USA Liaukevich et al.

0 .5 1.0 1.5 2.0 2.5 3.0

Cache size (GB)

10000

15000

20000

25000

30000

35000

40000

P
ro

ce
ss

in
g

ti
m

e
(m

s)

rasdaman scidb

Figure 7: Aggregated execution times of 10 queries withmul-
tiple equality comparisons.

but finally the optimal performance is achieved with cache sizes

above 1GB in this case.

6000

7000

8000

9000

10000

11000

12000

13000
0GB

.5GB

1.0GB

1.5GB

2.0GB

2.5GB

3.0GB

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Query

1000

1500

2000

2500

P
ro

ce
ss

in
g

ti
m

e
(m

s)

Figure 8: A break down of execution times per query with
multiple equality comparisons.

6 CONCLUSION
We have proposed a query caching concept specifically crafted

for array databases. It is based on maintaining intermediate query

evaluation results and allows to reuse cached data for common

subexpressions referring to the array area which may be identical

or partially overlapping. An algorithm for integrating the proposed

query cache into the query evaluation process has been described

and details of cache record identification and invalidation have

been covered. The algorithm has been implemented in rasdaman.

Experimental results have revealed that the more large and/or com-

plex query results are cached, the more relative speedup can be

achieved. In our tests – which will be extended in a next step – we

have seen savings of 93% corresponding to a performance speedup

factor of 14. Further work includes application of the cache for

complex processing and visualization on timeseries datacubes of

sizes between 20 Terabytes and 1 Petabyte in the course of the

EarthServer project [10]. Also, we plan to extend the main memory

caching to include persistent storage for materializing intermediate

query results.

ACKNOWLEDGEMENTS
Work has been supported by the European Commission under FP7

EarthServer and H2020 EarthServer-2.

REFERENCES
[1] Sibel Adali, K Selçuk Candan, Yannis Papakonstantinou, and VS Subrahmanian.

1996. Query Caching and Optimization in Distributed Mediator Systems. In ACM
SIGMOD Record, Vol. 25. 137–146.

[2] Mehmet Altinel, Qiong Luo, Sailesh Krishnamurthy, C Mohan, Hamid Pirahesh,

Bruce G Lindsay, Honguk Woo, and Larry Brown. 2002. DBcache: Database

Caching for Web Application Servers. In Proc. SIGMOD. ACM, 612–612.

[3] Gopi Krishna Attaluri and David Joseph Wisneski. 2002. Method and System for

Transparently Caching and Reusing Query Execution Plans Efficiently. (2002).

US Patent 6466931.

[4] Peter Baumann. 1994. Management of Multidimensional Discrete Data. VLDB
Journal 3, 4 (1994), 401–444.

[5] Peter Baumann. 1999. A Database Array Algebra for Spatio-Temporal Data and

Beyond. In Proc. NGITS. Springer, 76–93.
[6] Yu Cheng and Florin Rusu. 2013. Astronomical Data Processing in EXTASCID.

In Proc. SSDBM. ACM, Article 47, 4 pages.

[7] Oracle Corporation. 2008. Oracle Spatial GeoRaster Developer’s Guide, 11g.
[8] Oracle Corporation. 2014. Guide to Database Performance and Tuning, 11g.
[9] Doan El Zanfaly, AS Eldean, and Ammar RA. 2003. Multilevel caching to speedup

query processing in distributed databases. In Proc. 3rd IEEE International Sympo-
sium on Signal Processing and Information Technology. IEEE, 580–583.

[10] Baumann et al. 2015. Big Data Analytics for Earth Sciences: the EarthServer

Approach. International Journal of Digital Earth (2015).

[11] Bornhovd Christof et al. 2004. Adaptive Database Caching with DBCache. IEEE
Data Eng. Bull. 27.2 (2004), 11–18.

[12] Arash Fard, Satya Manda, Lakshmish Ramaswamy, and John A. Miller. 2014.

Effective Caching Techniques for Accelerating Pattern Matching Queries. In Proc.
IEEE Intl. Conf. on Big Data. IEEE.

[13] Paula Furtado and Peter Baumann. 1999. Storage of Multidimensional Arrays

Based on Arbitrary Tiling. In Proc. 15th Int. Conf. on Data Eng. IEEE, 480–489.
[14] Martin Kersten, Ying Zhang, Milena Ivanova, and Niels Nes. 2011. SciQL, a

Query Language for Science Applications. In Proc. EDBT/ICDT 2011 Workshop on
Array Databases. ACM, 1–12.

[15] Chang Liu, Brendan Fruin, and Hanan Samet. 2013. SAC: Semantic Adaptive

Caching for Spatial Mobile Applications. In Proc. ACM SIGSPATIAL. ACM.

[16] Qiong Luo, Sailesh Krishnamurthy, C Mohan, Hamid Pirahesh, Honguk Woo,

Bruce G Lindsay, and Jeffrey F Naughton. 2002. Middle-Tier Database Caching

for e-Business. In Proc. SIGMOD. ACM, 600–611.

[17] Bhushan Mandhani and Dan Suciu. 2005. Query Caching and View Selection for

XML Databases. In Proc. VLDB. VLDB Endowment, 469–480.

[18] R. Obe and L. Hsu. 2011. PostGIS in Action. Manning Pubs.

[19] paradigm4. 2016. SciDB Documentation 15.12.
[20] rasdaman GmbH. 2016. rasdaman Query Language Guide (9.3 ed.).
[21] T. Sellis. 1988. Intelligent caching and indexing techniques for relational database

systems. Information Systems 13.2 (1988), 175–185.
[22] Michael Stonebraker, Paul Brown, Alex Poliakov, and Suchi Raman. 2011. The

Architecture of SciDB. In Proc. SSDBM. Springer-Verlag, 1–16.

[23] Norbert Widmann and Peter Baumann. 1998. Efficient Execution of Operations

in a DBMS for Multidimensional Arrays. In Proc. SSDBM. IEEE, 155–165.

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Rasdaman Query Processing
	3.1 Operations Overview
	3.2 Query Evaluation

	4 Cache Design
	4.1 Common Subexpressions
	4.2 Tiling on Cached Results
	4.3 Cache Record Identification
	4.4 Cache Reuse
	4.5 Cache Invalidation
	4.6 Cache Rules

	5 Performance Evaluation
	5.1 Fine-grained Evaluation
	5.2 System Evaluation

	6 Conclusion
	References

