Massively Distributed Datacube Processing

Vlad Merticariu and Peter Baumann
Jacobs University, v.merticariu@jacobs -university.de, p.baum ann @jacobs -university.de

Abstract - Datacubes provide a suitable paradigm for
storing, accessing and processing large-scale, multi-
dimensional spatio-temporal raster data. As hardware
and distributed infrastructure, such as cloud and
federations, become common, enabling datacubes to fully
exploit the available capabilities is a crucial step in
building scalable systems for complex query answering
in real time. In this contribution, we describe an
approach to distributed datacube processing that enables
datacube engines — in our case rasdaman — to analyze,
for every incoming query, a large number of equivalent
distributed execution variants, and to pick an efficient
one.

Index Terms — array, datacube, distributed processing, query
planning, rasdaman

INTRODUC TION

The datacube model is gaining more and more attention
when dealing with Big Data challenges in a variety of
domains such as remote sensing, climate simulations,
geographic information systems, medical imaging or
astronomical observations. Solutions provided by classical
Big Data tools such as NoSql [1] and MapR educe [2] proved
to be very efficient when dealing with simple, linear, data
structures, however they are limited in domains associated
with multi-dimensional data [3]. Traditional relational
databases share the same problem: even though they are
known for successfully handling data of any size, they lack
the tools for dealing with multi-dimensional datasets. This
problem has been addressed by the field of array databases,
in which systems provide datacube services for raster data,
without imposing limitations on the number of dimensions
that a dataset can have. Examples of datasets usually
handled by array databases include 1-dimensional sensor
data, 2-D satellite imagery, 3-D x/y/t image time series as
well as x/y/z geophysical voxel data, and 4-D x/y/z/t weather
data. In life sciences, there is laser scan microscopy and
brain scans. And this can grow as large as simulations ofthe
whole universe when it comes to astrophysics [4].

Due to the complexity of array operations, and the high
data volumes involved, several techniques are used for
speeding up array queries, the most prolific ones being query
optimization and parallel query processing. Both methods
have been extensively studied in the relational database
field, but only partially applied to array databases due to
specific raster data properties which require different
approaches. For example, one of the most characterizing
properties of arrays is the well-defined Euclidean
neighborhood, which has high impact on access locality

978-1-5386-9154-0/19/$31.00 ©2019 IEEE

4787

(when aparticular cell is accessed it is extremely likely that
its neighbor pixels will also get accessed) and induces
efficient partitioning techniques for storage [5].

RELATED W ORK

Exploiting parallelism to process queries has been widely
explored for improving query response times in relational
databases [6][7]. As RDBMS operations are usually limited
to retrieval, filtering and aggregations, most of the systems
focus either on partitioning the data and applying the same
query execution tree to smaller partitions or distributing a
limited set of operators to different processors on the same
machine [7]. While this represents a good starting point for
exploiting parallelism in datacubes, further optimization
opportunities are missed: non-trivial (non “embarrassingly
parallel) tasks are common in the datacube world, and they
are not targeted. Furthermore, heterogeneous infrastructures
(e.g. part of the datacube sitting in a cloud, and part of it
sitting on-board a satellite [8]), where hardware properties
vary considerably, require a more detailed inspection of the
possible distribution alternatives and their costs, which we
achieve with the method introduced in the paper.

Another related framework is MapReduce [2]: a
programming model for simplified parallel processing of
large datasets. It has two components: a Map procedure that
performs filtering and sorting, and a Reduce procedure for
summarizing the results of the Map step. Hadoop [9], the
open source MapReduce implementation, supports the
execution of programmable user tasks. Its efficiency,
however, is known to be poor when compared to parallel
databases [10], and, when it comes to datacubes, specific
raster data properties, such as Euclidian neighborhood o f
pixels, are ignored, and each pixel is processed individually,
making it orders ofmagnitude slower [11].

Google Earth Engine combines a catalog of satellite
imagery and geospatial datasets with analytics capabilities
[12]. It builds on the tradition of Grid systems with files
however, without providing datacube paradigm. Based on a
functional programming language, without advanced
parallelization capabilities (only “embarrassingly parallel”
operations), users can submit code which is executed
transparently in Google’s own distributed environment, with
a worldwide private network. The method that we present,
on the contrary, handles distribution of any operation, in any
network. To the best of our knowledge, no other framework
achieves that in the datacube world.

IGARSS 2019

Authorized licensed use limited to: Peter Baumann. Downloaded on March 23,2025 at 12:46:13 UTC from IEEE Xplore. Restrictions apply.

QUERY PROCESSING

Storage-wise, datacubes are split into units of access
called tiles [5], optimization which enables efficient data
retrieval by minimizing the amount of unnecessary
information which is read from disk, by retrieving only the
tiles affected by the query. Tiles ofthe same datacube can sit
on different machines, which, as we will see in the following
sections, enhances the level ofparallelism in processing.

Datacube operations are usually triggered via
standardized web services, such as WCS, WMS and WCPS
[13]. However, these services are only the interface to the
client performing the operation, while the processing itselfis
handled at a lower level which enables optimized, efficient
execution. In rasdaman, the geo layer intercepting the web
requests representing datacube operations translates them
into array database queries, which are then handled by
rasdaman’s query processing engine [14].

For example, computing the NVDI over Europe, on the
1 of July 2018, using Sentinel data stored in a datacube
with the same name, and returning the result as a NetCDF
file, can be achieved with the ©llowing WCPS query:

for $¢ in (Sentinel) return encode(
(($c.nir — $c.red) / ($c.nir + $c.red))
[Lat(35:70), Long(10:40), ansi(“2018-07-017)],
“image/tift”)

In this case, the datacube has 3 dimensions corresponding to
Latitude, Longitude and Time (here expressed using ansi
coordinate system) axes.

Traditionally, in relational systems, queries are modeled
as query trees: tree data structures representing relational
expressions [7]. The tables involved in the queries are
represented as leaf nodes and the operations are represented
as internal nodes. Similarly, in datacube systems, datacube
expressions can be modeled as trees. The tiles touched by
the query are represented as leaves, and the operations as
internal nodes.

Prior to evaluation, queries undergo heuristic
optimization based on rewriting rules (for example, subsets
are pushed down in the query tree, in order to discard
unnecessary data as early as possible). Once heuristic
optimization concludes, cost-based approaches can be used
to further explore execution alternatives. In the next
sections, we present such an approach, which focuses on
inspecting the cost of executing different parts of the
heuristically optimized query tree on different machines
availabl e in the network.

CoST MODEL

In order to evaluate different execution variants ofthe same
query, a cost model has been established, taking into account
three key factors: the amount ofdata accessed, the amount of
data transported over the network, and the amount of
processing. The processing costs are further differentiated
into resource costs and time costs (e.g. averaging over 1 GB

ofdata sequentially has the same resource processing cost as
averaging over 1GB of data under parallel load because the
same amount of CPU cycles is spent but has a higher time
processing cost because it takes longer). In future, this will
allow for different optimization strategies, such as
minimizing response times, minimizing internal data
transport, or optimizing overall service load balance.
Formally, the cost is defined as a function taking as
input a query tree, and returning the following quadruple:

e (C,: data access cost, measuring the total amount of data
read from disk in the evaluation of the input query. This
is measured by summing up the sizes ofdata accessed in
the leaf nodes ofthe query tree representing tile access.

e C, processing resource cost, measuring the total amount
ofprocessing spent in the evaluation of the query. This
is measured recursively in the operation nodes of the
query tree, the cost of the parent node being the sum of
the processing resource costs of all children of the node,
plus operated data size multiplied by a constant that is
different for each operation. The constant determines
how much processing costs for a given operation on a
particular machine (e.g. addition is cheaper than square
root), and can be approximated by running a micro
benchmark at application start. The final cost of the
query is the cost ofthe root node.

e C,: processing time costs, measuring the total
processing time spent in the evaluation of the query.
Similar to C,, this is measured recursively, with the
difference that when taking into account the cost ofthe
children operations, instead of the sum, only the
maximum one is considered.

e (g transport costs, measuring the total amount of data
going over the network. This is done by summing data
sizes of nodes representing subqueries to remote
machines, as well as the size ofthe query result.

LOCATION AWARE PROCESSING

Given an array query tree, and a network, the goal is to
determine the optimal execution location for each
subexpression (or node), such that the overall cost is
minimized. In order to efficiently represent the search space,
we introduce a new data structure: location aware query
trees. A location aware query tree is a query tree where each
query tree node is decorated with the set of possible
execution locations. In the query execution pipeline, a
location aware query tree is created starting from a
heuristically optimized query tree, by annotating all its nodes
with a set oflocations.

For example, in a network with 3 machines
m = {5,,5..5; }, containing a datacube 4, which in turn
contains a single tile a, the query “for $cin (A) return $c +
1” is represented by the fllowing query tree, where D
represents the delivery node:

4788

Authorized licensed use limited to: Peter Baumann. Downloaded on March 23,2025 at 12:46:13 UTC from IEEE Xplore. Restrictions apply.

@ @
Figure 1. Query tree for “$c + 1”.

Making this tree location aware is done by decorating
each node with a set of possible execution locations. For
example, the corresponding location aware tree that assumes
that any node can be executed on any computer in the
network is the fllowing:

(D >{Sl, S2, S3}

<~
(o)
=

@5, 52, 53

&E
o)

e “{Slﬁ S27 53}

@ @

Figure 2. Location aware query tree.

However, not all possibilities are valid. For example,
tile nodes (in this case a) can only be executed (i.e. loaded)
from nodes on which they are stored, while the root node,
which delivers the result back to the user, must reside on the
node on which the query was issued. Furthermore, the node
representing the constant value 1 can always be executed on
the same machine where its parent resides, without incurring
extra costs. Assume tile a sits on machine S,, and the query
is executed on machine S;, the following refined location
aware tree captures the above observations.

@
@S, 52,53}
\¢ ?_\(/
So} @i "N
g @
N ~

Figure 3. Refined location aware query tree.

The tree now indicates that the + node can be executed
on any node in the network. The next steps are now to
instantiate the corresponding tree for each variant, compute
the corresponding costs, and pick the one that is the least
expensive. However, in order to ensure that the tree can be

in fact executed, the data delivered by the tile node a must
be transported to the machine where the + node is to be
evaluated, in case they sit on different computers. A similar
step must be performed with the result of the + node, to
ensure that in the end it reaches the machine where the
delivery node sits, so the result can finally reach the user.
The transportation of data is ensured by a special node
(named T), which is added whenever a mismatch between
the location of a parent node and the one of a child node
occurs, leading to the following execution candidates.

SQq11 JQq11 /G2
D ;ﬂb]/ 'D ‘/.)1.51/ D {51}
< ~ 5
T)
T) T/ S
o] {53}
/G = /G 4
{52} T {52}
&/ o/ 1S3}
A -~ f M) 1 B
/G0l aif /So}t sGol (S92} sl
W=/ oEn 1 1 el) 1 /\1 S {S2} 2D
— = — =

Figure 4. Resulting execution candidates E;, E,, E;.

Using the previously discussed cost model, the engine
can now rank the 3 candidates: they all access the same
amount of data, and they all perform the same amount of
processing. The amount of data transported through the
network, however, is 1 tile for the E; and E, trees, and 2 tiles
for the E; tree, making it a less desirable candidate. Thus,
the engine will execute one of E; and E, which have the
same cost.

PRUNING STRATEGIES

The method presented in the section above, while exhaustive

in the number ofpossible location assignments for the query

tree nodes, has the disadvantage of producing a potentially
large number of candidates in case the query produces a tree
with a large number ofnodes, or in case the network is large.

Heuristic strategies are used to reduce the number of

candidates that need to be inspected. While presenting the

exact details of the strategies is out of the scope of this
paper, we briefly describe 2 of them, which have an
increased practical rel evance:

e Transport minimization: by pruning the execution
locations of a node that are not part of the execution
locations of its parent or children, the number of
necessary network transfers is reduced [15]. This is
relevant especially when federations of datacubes are
involved, where transporting large amounts of data
across datacenters is not feasible.

e Processing balancing: this strategy favors those
candidates that achieve an equal distribution of
processing tasks in the network, and is relevant in
homogeneous environments with high bandwidth
between the machines, such as clouds.

4789
Authorized licensed use limited to: Peter Baumann. Downloaded on March 23,2025 at 12:46:13 UTC from IEEE Xplore. Restrictions apply.

CONCLUSION

We presented a method that enables datacube engines to
inspect and rank a large number of execution candidates,
which allows determining suitable distributed execution
plans for each incoming datacube query. While the set of
possible candidates is sometimes too large for all its
elements to be inspected individually, heuristic methods can
be used for reducing it, depending on the particular situation.
The optimization enables datacube engines to efficiently
exploit distributed infrastructure in answering queries.

A real-life use-case of the optimization can be observed
in the federation which was set up between the CODE-DE
datacube precursor service established in the BigDataCube
project [16], and the Alfred Wegener Institute for Polar and
Marine Research (AWI). Among others, temperature
datacubes are available at CODE-DE, and Sealce datacubes
are available at AWI. In one of the use-cases, scientists need
to compute the sea ice distribution at different temperature
intervals. The WCPS query that achieves that is presented
below. Note that the involved datacubes contain data at
different resolutions, and in different coordinate systems, so
scale and reprojection operations are required before finally
combining them to obtain the answer:

for $c in (Sealce), $d in (T2m)
return encode(

coverage SealceByTemperature

over $temp t(-40:0)

values ad d(
scale(

$c[ansi("2018-01-01")],
{ Lat:"CRS:1"(0:360),
Long:"CRS:1"(0:719) })

*
(($d[ansi("2018-01-01")] -273.15) > $temp)
)

, "CSV")

The query iterates over temperature values in the
interval (-40, 0), in Celsius. At each step, a binary mask is
determined from the temperature data, corresponding to
temperature pixels having values exceeding the iterator
value. The sea ice data is reprojected and scaled to match the
temperature data, then only pixels matching the binary
temperature mask are considered. The values are then added
to obtain, for each temperature step, the total sea ice value
corresponding to it.

Because the setup is a federation, a strategy that
minimizes the amount of data transported between locations
is used. The winning execution plan is one where the scaling
and the reprojection of the Sealce data happens internally at
AWI, balanced against the available processing nodes, and,
similarly, the temperature binary mask generation happens at
CODE-DE, yielding 2 intermediary results, which must end
up on the same machine for the next step ofthe computation.
Out of the 2 candidates, the binary masks is transported

because of its smaller size (1 bit per pixel), as well as its
suitability for compression. The final computation happens
in the AWI network, and, in case the query was originally
performed at CODE-DE, the final result, which is just 40
scalar values, is transported back. This allows the user to
execute the same query in any ofthe 2 networks, without
taking into account data placement, knowing that the engine
will always pick an efficient execution schedule.

ACKNOWLEDGMENT

This work is being supported by H2020 LandSupport,
H2020 EOSC-hub, and German BMWi BigDataCube.

REF ERENC ES

[1] Strauch, C. and Kriha W.. "NoSQL databases." Lecture Notes,
Stuttgart Media University, 2011.

[2] Dean,J., and Ghemawat, S. "Map Reduce: simplified data processing
on large clusters." Communications of the ACM. 51.1,2008, 107-113.

[3] Leavitt, N. "Will NoSQL databases live up to their promise ?."
Computer, 43.2,2010, 12-14.

[4] N.n. “Big Science Data Coming to SQL Databases”.
http: //slashgeo.org/20 14/06/27/b ig-science-data-coming-sql-
databases/.

[5] Baumann P, etal. “Putting Pixels in Place: A Storage Layout
Language for Scientific Data”. Proc. IEEE ICDM Works hop on
Spatial and Spatiotemporal Data M ining , 2010.

[6] Pirahesh H., etal.”Parallelism in relational data base sy stems:
architectural issues and design approaches”, DPDS, 1990.

[71 Hong, M. etal. "Query processing in a parallel object-relational
database system." Data Engineering, 3, 1996.

[8] Baumann, P. etal. “Breaking the big data barrier by enhancing on-
board sensor flexibility” Proc. ACM BigSpatial, 2013.

[9] N.n.“Apache Hadoop”. http://hadoop.apache.org/.

[10] Rusu, F., and Cheng, Y. "A survey on array storage, query languages,
and sy stems". arXiv preprint, arXiv:1302.0103, 201 3.

[11] Research Data Alliance. “Array Databases: Concepts, Standards,
Implementations” Research Data Alliance (RDA) Working Group
Report, dx.doi.org/10.1549 7/RD A00024, 2018.

[12] N.n. “Google Earth Engine”. https:/earthengine.google.com/.

[13] N.n“Web Coverage Processing Service”.
https ://www.o pengeospatial.org /standards/weps.

[14] ISO, “Information technology — Database languages — SQL — Part
15: Multi-Dimensional Arrays”, ISO 9075-15:2018

[15] Dumitru, A. etal. “Exploring cloud opportunities from an array
database perspective”. Proc. ACM SIGMOD Dana C, 2014 .

[16] N.n., “BigData Cube”, http ://www. bigdatacube.org/

AUTHOR INFORMATION

Vlad Merticariu, PhD Student, Department of Com puter
Science and Electrical Engineering, Jacobs University.
Peter Baumann, Professor, Department of Computer
Science and Electrical Engineering, Jacobs University.

4790
Authorized licensed use limited to: Peter Baumann. Downloaded on March 23,2025 at 12:46:13 UTC from IEEE Xplore. Restrictions apply.

