

Massively Distributed Datacube Processing

 Vlad Merticariu an d Peter Baumann
Jacobs University, v.merticariu@jacobs -university.de, p.baumann@jacobs -university.de

Abstract - Datacub es provide a suitable paradigm for

storing, accessing and processing la rge-scale, multi -

dimensional spatio-temporal raster data. As hardware

and distributed infrastructure, such as cloud and

federations, become common, enabling datacubes to fully

exploit the available capabilities is a crucial step in

building scalable systems for complex query answering

in real time. In this contribution, we describe an

approach to distributed datacube processing that enables

datacube engin es – in our case rasdaman – to analyze,

for every incoming query, a large number of equivalent

distributed execution variants, and to pick an efficient

one.

Index Terms – array, datacube, distributed processing, query

planning, rasdaman

INTRODUC TION

The dat acube model is gaining more and more attention

when dealing with Big Data challenges in a variety o f

domains such as remote sensing, climate simulations,

geographic information systems, medical imaging or

astronomical observations. Solutions provided by cl assical

Big Data tools such as NoSql [1] and MapR educe [2] proved

to be very effici ent when dealing with simple, linear, dat a

structures, however they are limit ed in domains associat ed

with multi-dimensional data [3]. Traditional relational

databases share the same problem: even though they are

known for successfully handling data of any size, they lack

the tools for dealing with multi-dimensional dat asets. This

problem has been addressed by the fi eld of array dat abases,

in which systems provide datacube services for rast er data,

without imposing limitations on the number of dimensions

that a dat aset can have. Examples of datasets usually

handled by array dat abases include 1-dimensional sensor

data, 2-D sat ellite imagery, 3 -D x/y/t image time seri es as

well as x/y/ z geophysi cal voxel dat a, and 4-D x/y/z/t weather

data. In li fe sci ences, there is laser scan microscopy and

brain scans. And this can grow as l arge as simulations of the

whole universe when it comes to astrophysi cs [4].

Due to the complexity of array operations, and the high

data volumes involved, several t echniques are used for

speeding up array queri es, the most proli fi c ones being query

optimization and parall el query processing. Both methods

have been extensively studied in the relational database

fi eld, but only parti ally applied to array databases due to

speci fic raster data properties which require di fferent

approaches. For example, one of the most charact eri zing

properti es of arrays is the well-defined Euclidean

neighborhood, which has high impact on access locality

(when a parti cul ar cell is accessed it is ext remely likely that

its neighbor pixels will also get accessed) and induces

effi ci ent partitioning techniques for storage [5].

RELATED WORK

Exploiting parallelism to process queri es has been widely

explored for improving query response times in relational

databases [6][7]. As RDBMS operations are usually limit ed

to retri eval, filt ering and aggregations, most of the syst ems

focus either on partitioning the data and applying the same

query execution tree to small er partitions or distributing a

limited set of operators to di fferent processo rs on the same

machine [7]. While this represents a good st arting point for

exploiting parallelism in datacubes, further optimization

opportunities are missed: non-trivi al (non ― embarrassingly

parallel ‖) t asks are common in the datacube world, and they

are not targeted. Furthermore, heterogeneous infrast ructures

(e.g. part of the dat acube sitting in a cloud, and part of it

sitting on-board a satellit e [8]), where hardware properti es

vary considerably, require a more det ailed inspection of the

possible distribution alt ernatives and their costs, which we

achieve with the method introduced in the paper.

Another relat ed framework is MapR educe [2]: a

programming model for simpli fi ed parall el processing of

large datasets. It has two components: a Map procedure that

performs filtering and sorting, and a Reduce procedure for

summarizing the results of the Map step. Hadoop [9], the

open source MapR educe implementation, supports the

execution of programm able user t asks. Its effi ciency,

however, is known to be poor wh en compared to parallel

databases [10], and, when it comes to datacubes, speci fi c

rast er dat a properties, such as Euclidi an neighborhood o f

pixels, are ignored, and each pixel is processed individually,

making it orders of magnitude slower [11].

Google Earth Engine combines a cat alog of sat ellite

imagery and geospati al datasets with analyti cs capabilities

[12]. It builds on the tradition of Grid syst ems with fil es

however, without providing dat acube paradigm. Based on a

functional programming l anguage, without advanced

paralleli zation capabilities (only ― embarrassingly parallel ‖

operations), users can submit code which is executed

transparently in Google’s own distributed environment, with

a worldwide private network. The method that we present,

on the contrary, handles distribution of any operation, in any

network. To the best of our knowledge, no other framework

achieves that in the dat acube world.

4787978-1-5386-9154-0/19/$31.00 ©2019 IEEE IGARSS 2019

Authorized licensed use limited to: Peter Baumann. Downloaded on March 23,2025 at 12:46:13 UTC from IEEE Xplore. Restrictions apply.

Q UERY PROCESSING

Storage-wise, datacubes are split into units of access

call ed tiles [5], optimization which enables effi cient dat a

retri eval by minimizing the amount of unnecessary
information which is read from disk, by retri eving only the

tiles affected by the query. Tiles of the same dat acube can sit

on di fferent machines, which, as we will see in the following

sections, enhances the level of parallelism in processing.

Datacube operations are usually triggered via

standardized web servi ces, such as WCS, WMS and WCPS

[13]. However, these servi ces are only the int erface to the

client performing the operation, whil e the processing itsel f is

handled at a lower level which enables optimized, effici ent

execution. In rasdaman, the geo l ayer int ercepting the web

requests representing datacube operations transl ates them

into array database queri es, which are then handled by

rasdaman’s query processing engine [14].

For example, computing the NVDI over Europe, on the

1
st

 of July 2018, using Sentinel data stored in a datacube

with the same name, and returning the result as a NetCDF

fil e, can be achieved with the following WCPS query:

for $c in (Sentinel) return encode(

 (($c.nir – $c.red) / ($c.nir + $c.red))

 [Lat(35:70), Long(10:40), ansi (― 2018-07-01‖)],

 ― image/tiff‖)

In this case, the dat acube has 3 dimensions corresponding to

Latitude, Longitude and Time (here expressed using ansi

coordinat e system) axes.

Traditionally, in rel ational syst ems, queri es are modeled

as query trees: t ree data st ructures representing relational

expressions [7]. The tabl es involved in the queri es are

represented as l eaf nodes and the operations are represented

as internal nodes. Similarly, in datacube systems, datacube

expressions can be modeled as trees. The tiles touched by

the query are represented as leaves, and the operations as

internal nodes.

Prior to evaluation, queri es undergo heuristic

optimization based on rewriting rules (for example, subsets

are pushed down in the query tree, in order to discard

unnecessary data as early as possibl e). Once heuristi c

optimization concludes, cost-based approaches can be used

to further explore execution alt ernatives. In the next

sections, we present such an approach, which focuses on

inspecting the cost of executing di fferent parts of the

heuristi cally optimized query t ree on di fferent machines

avail abl e in the network.

COST MODEL

In order to evaluate di fferent execution variants of t he same

query, a cost model has been est ablished, taking into account

three key factors: the amount of dat a accessed, the amount of

data t ransport ed over the network, and the amount o f

processing. The processing costs are further di fferentiat ed

into resource costs and time costs (e.g. averaging over 1GB

of dat a sequentially has the same resource processing cost as

averaging over 1GB of data under parallel load because the

same amount of CPU cycles is spent but has a higher time

processing cost because it takes longer). In future, this will

allow for di fferent optimization strategi es, such as

minimizing response times, minimizing int ernal dat a

transport, or optimizing overall servi ce load bal ance.

Formally, the cost is defined as a function t aking as

input a query tree, and returning the following quadruple:

 Ca: data access cost, measuring the tot al amount of data

read from disk in the evaluation of the input query. This

is measured by summing up the sizes of data accessed in

the leaf nodes of the query tree representing tile access.

 Cr: processing resource cost, measuring the total amount
of processing spent in the evaluation of the query. This

is measured recursively in the operation nodes of the

query tree, the cost of the parent node being the sum of

the processing resource costs of all children of the node,

plus operat ed data si ze multipli ed by a const ant that is

di fferent for each operation. The constant det ermines

how much processing costs for a given operation on a

parti cular machine (e.g. addition is cheaper than square

root), and can be approximated by running a micro

benchmark at appli cation start. The final cost of the

query is the cost of the root node.

 Cp: processing time costs, measuring the total

processing time spent in the evaluation of the query.

Similar to Cr, this is measured recursively, with the

di fference that when t aking into account the cost of the

children operations, instead of the sum, only the

maximum one is considered.

 Ct: transport costs, measuring the tot al amount of data

going over the network. This is done by summing data

sizes of nodes representing subqueries to remote
machines, as well as the size of the query result.

LOCATION AWARE PROC ESSING

Given an array query tree, and a network, the goal is to

determine the optimal execution location for each

subexpression (or node), such that the overall cost is

minimized. In order to effici ently represent the search space,

we introduce a new data st ructure: location aware query

trees. A location aware query t ree is a query tree where each

query tree node is decorated with the set of possibl e

execution locations. In the query execution pipeline, a

location aware query tree is creat ed starting from a

heuristi cally optimized query tree, by annotating all its nodes

with a set of locations.

For example, in a network with 3 machines

, containing a dat acube A, which in turn

contains a single til e a, the query ― for $c in (A) return $c +

1‖ is represented by the following query t ree, where D

represents the delivery node:

4788

Authorized licensed use limited to: Peter Baumann. Downloaded on March 23,2025 at 12:46:13 UTC from IEEE Xplore. Restrictions apply.

Making this tree l ocation aware is done by decorating

each node with a set of possible execution locations. For

example, the corresponding location aware tree that assumes

that any node can be executed on any computer in the

network is the following:

However, not all possibilities are valid. For example,

tile nodes (in this case a) can only be executed (i.e. loaded)

from nodes on which they are stored, while t he root node,

which delivers the result back to the user, must reside on the

node on which the query was issued. Furthermore, the node

representing the const ant value 1 can always be executed on

the same machine where its parent resides, without incurring

extra costs. Assume tile a sits on machine S2, and the query

is executed on machine S1, the following refined location

aware tree captures the above observations.

The tree now indicat es that the + node can be executed

on any node in the network. The next steps are now to

instantiat e the corresponding tree for each vari ant, compute

the corresponding costs, and pick the one that is the least

expensive. However, in order to ensure that the tree can be

in fact executed, the data delivered by the tile node a must

be transported to the machine where the + node is to be

evaluat ed, in case they sit on di fferent computers. A similar

step must be performed with the result of the + node, to

ensure t hat in the end it reaches the machine where the

delivery node sits, so the result can finally reach the user.

The transport ation of data is ensured by a speci al node

(named T), which is added whenever a mismatch between

the location of a parent node and the one of a child node

occurs, leading to the following execution candidat es.

Using the previously discussed cost model, the engine

can now rank the 3 candidat es: they all access the same

amount of data, and they all perform the same amount o f

processing. The amount of dat a transported through the

network, however, is 1 tile for the E1 and E2 trees, and 2 tiles

for the E3 tree, making it a l ess desirabl e candidat e. Thus,

the engine will execute one of E1 and E2, which have the

same cost.

PRUNING STRATEGIES

The method presented in the section above, whil e exhaustive

in the number of possible location assignments for the query

tree nodes, has the disadvantage of producing a potenti ally

large number of candidat es in case the query produces a t ree

with a large number of nodes, or in case the network is large.

Heuristic st rat egies are used to reduce the number o f

candidat es that need to be inspect ed. While presenting the

exact details of the strategies is out of t he scope of this

paper, we bri efly describe 2 of them, which have an

increased practical rel evance:

 Transport minimization: by pruning the execution
locations of a node that are not part of the execution

locations of its parent or children, the number of

necessary network transfers is reduced [15]. This is

rel evant especially when federations of dat acubes are

involved, where transporting large amounts of data

across dat acenters is not feasibl e.

 Processing bal ancing: this strategy favors those

candidat es that achieve an equal dist ribution of

processing tasks in the network, and is rel evant in

homogeneous environments with high bandwidth

between the machines, such as clouds.

Figure 1. Query tree for ― $c + 1‖.

Figure 2. Location aware query tree.

Figure 3. Refined location aware query tree.

Figure 4. Resulting execution candidates E1, E2, E3.

4789

Authorized licensed use limited to: Peter Baumann. Downloaded on March 23,2025 at 12:46:13 UTC from IEEE Xplore. Restrictions apply.

CONC LUSION

We presented a method that enables datacube engines to

inspect and rank a l arge number of execution candidates,

which allows det ermining suitable distri buted execution
plans for each incoming dat acube query. While the set of

possible candidates is sometimes too large for all its

elements to be inspect ed individually, heuristi c methods can

be used for reducing it, depending on the parti cular situation.

The optimization enables dat acube engines to effici ently

exploit distributed infrast ructure in answering queries.

A real -li fe use-case of the optimization can be observed

in the federation which was set up between the C ODE-DE

datacube precursor servi ce est ablished in the Big DataCube

project [16], and the Al fred Wegener Institut e for Polar and

Marine Research (AWI). Among others, t emperature

datacubes are available at C ODE-DE, and SeaIce datacubes

are available at AWI. In one of the use-cases, scientists need

to compute the sea ice distri bution at di fferent t emperature

intervals. The WCPS query that achieves that is presented

below. Note that the involved dat acubes contain dat a at

di fferent resolutions, and in di fferent coordinate syst ems, so

scal e and reprojection operations are required before finally

combining them to obtain the answer:

for $c in (SeaIce), $d in (T2m)

 return encode(

 coverage SeaIceByTemperature

 over $temp t(-40:0)

 values add(

 scale(

 $c[ansi("2018-01-01")],

 { Lat:"CRS:1"(0:360),

 Long:"CRS:1"(0:719) })

 *

 (($d[ansi("2018-01-01")] -273.15) > $temp)

)

 , "csv")

The query it erates over t emperature values in the

interval (-40, 0), in Celsius. At each st ep, a binary mask is

determined from the temperature dat a, corresponding to

temperature pixels having values exceeding the iterator

value. The sea ice dat a is reproj ect ed and scaled to match the

temperature dat a, then only pixels matching the binary

temperature mask are considered. The values are then added

to obtain, for each temperature st ep, the total sea i ce value

corresponding to it.

Because the setup is a federation, a st rat egy that

minimizes the amount of data t ransport ed between locations

is used. The winning execution plan is one where the scaling
and the reproj ection of the S eaIce dat a happens int ernally at

AWI, balanced against the availabl e processing nodes, and,

similarly, the temperature binary mask generation happens at

CODE-DE, yielding 2 intermediary results, which must end

up on the same machine for the next step of the computation.

Out of the 2 candidat es, the binary masks is transport ed

because of its small er si ze (1 bit per pixel), as well as its

suitability for compression. The final computation happens

in the AW I network, and, in case the query was originally

performed at CODE-DE, the final result, which is just 40

scal ar values, is transport ed back. This allows the user to

execute the same query in any of t he 2 networks, without

taking into account data placement, knowing that the engine

will always pick an effici ent execution schedule.

ACKN OWLEDGMENT

This work is being supported by H2020 LandSupport,

H2020 EOSC-hub, and German BMWi BigDataCube.

REF ERENC ES

[1] Strauch, C. and Kr iha W.. "NoSQL databases." Lecture Notes,
Stuttgart Media Universi ty, 2011.

[2] Dean, J., and Ghemawat, S. "MapReduce: simplified data processing

on large clusters." Commun ications of the ACM. 51.1, 2008, 107-113.

[3] Leavitt, N. "W ill NoSQL databases live up to their promise ?."
Computer, 43.2, 2010, 12-14 .

[4] N.n. ―Big Science Data Coming to SQL Databases‖.

http: //slashgeo.org/2014/06 /27/b ig-science-data-coming-sql-
databases/.

[5] Baumann P., et al. ―Putting Pixels in Place: A Storage Layout

Language for Scientific Data‖. Proc. IEEE ICDM Workshop on
Spatia l and Spatiotempora l Data M ining , 2010.

[6] Pirahesh H., et al.‖Parallelism in relational data base sy stems:

architectural issues and design approaches‖, DPDS, 1990.

[7] Hong, M. et al. "Query processing in a parallel object-relational
database sy stem." Data Engineering , 3, 1996.

[8] Baumann, P. et al. ―Breaking the big data barrier by enhancing on-

board sensor flexibil ity ‖ Proc. ACM BigSpatial, 2013.

[9] N.n. ―Apache Hadoop‖. http:/ /hadoop.apache.org/.

[10] Rusu, F., and Cheng, Y. "A survey on array storage, query languages,

and sy stems". arXiv preprint, arXiv:1302.0103, 2013.

[11] Research Data Alliance. ―Array Databases: Concepts, Standards,
Implementations‖ Research Data All iance (RDA) Working Group

Report, dx.doi.org/10.15497/RD A00024, 2018.

[12] N.n. ―Google Earth Eng ine‖. https ://earthengine.google.com/.

[13] N.n ―Web Coverage Processing Service‖.

https ://www.opengeospatial.org /standards/wcps.

[14] ISO, ―Information technology — Database languages — SQL — Part
15: Multi-Dimensional Arrays‖, ISO 9075-15:2018

[15] Dumitru, A. et al. ―Explor ing cloud opportunit ies from an array

database perspective‖. Proc. ACM SIGMOD DanaC, 2014 .

[16] N.n., ―BigData Cube‖, http ://www.bigdatacube.org/

AUTHOR INF ORMATION

Vlad Merticariu, PhD Student, Department of Computer

Science and Electri cal Engineering, Jacobs University.

Peter Baumann, Professor, Department of Computer

Science and Electri cal Engineering, Jacobs University.

4790

Authorized licensed use limited to: Peter Baumann. Downloaded on March 23,2025 at 12:46:13 UTC from IEEE Xplore. Restrictions apply.

