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Abstract - Datacub es provide a suitable paradigm for 

storing, accessing and processing la rge-scale, multi -

dimensional spatio-temporal raster data. As hardware 

and distributed infrastructure, such as cloud and 

federations, become common, enabling datacubes to fully 

exploit the available capabilities  is a  crucial step in  

building scalable systems for complex query answering 

in real time. In this contribution, we describe an  

approach to distributed datacube processing that enables  

datacube engin es –  in our case rasdaman –  to  analyze,  

for every incoming query, a large number of  equivalent 

distributed execution variants, and to pick an efficient 

one.   

 

Index Terms – array, datacube, distributed processing, query 

planning, rasdaman  

INTRODUC TION  

The dat acube model is  gaining more and more attention 

when dealing with Big Data challenges in a variety o f 

domains such as remote sensing, climate simulations,  

geographic information systems, medical imaging or 

astronomical observations. Solutions provided by cl assical  

Big Data tools such as NoSql [1] and MapR educe [2] proved 

to be very effici ent when dealing with simple, linear, dat a 

structures, however they are limit ed in  domains associat ed 

with multi-dimensional  data [3]. Traditional  relational  

databases share the same problem: even though they are 

known for successfully handling data of any size, they lack 

the tools  for dealing with multi-dimensional dat asets. This  

problem has been addressed by the fi eld of array dat abases,  

in which systems provide datacube services for rast er data,  

without imposing limitations on the number of dimensions  

that a dat aset can have. Examples of datasets usually 

handled by array dat abases include 1-dimensional sensor 

data, 2-D sat ellite imagery, 3 -D x/y/t image time seri es as  

well as x/y/ z geophysi cal voxel dat a, and 4-D x/y/z/t weather 

data. In li fe sci ences, there is laser scan microscopy and 

brain scans. And this can grow as l arge as simulations of the 

whole universe when it comes to astrophysi cs [4]. 

Due to the complexity of array operations, and the high 

data volumes  involved, several t echniques are used for 

speeding up array queri es, the most proli fi c ones being query 

optimization and parall el query processing. Both methods  

have been extensively studied in the relational database 

fi eld, but only parti ally applied to array databases due to  

speci fic raster data properties  which require di fferent  

approaches. For example, one of the most charact eri zing 

properti es of arrays is the well-defined Euclidean 

neighborhood, which has high impact on access locality  

(when a parti cul ar cell is  accessed it is ext remely likely that  

its neighbor pixels  will also get accessed) and induces  

effi ci ent partitioning techniques for storage [5].  

RELATED WORK  

Exploiting parallelism to process queri es has been widely 

explored for improving query response times in relational  

databases [6][7]. As  RDBMS  operations  are usually limit ed 

to retri eval, filt ering and aggregations, most of the syst ems  

focus either on partitioning the data and applying the same 

query execution tree to  small er partitions  or distributing a 

limited set of operators to di fferent processo rs on the same 

machine [7]. While this represents a good st arting point for 

exploiting parallelism in datacubes,  further optimization 

opportunities are missed: non-trivi al (non ― embarrassingly 

parallel ‖) t asks are common in the datacube world, and they 

are not targeted. Furthermore, heterogeneous infrast ructures  

(e.g. part of the dat acube sitting in a cloud, and part of it  

sitting on-board a satellit e [8]), where hardware properti es  

vary considerably, require a more det ailed inspection of the 

possible distribution alt ernatives and their costs, which we 

achieve with the method introduced in the paper.   

Another relat ed framework is MapR educe [2]: a 

programming model for simpli fi ed parall el processing of 

large datasets. It has two components: a Map procedure that  

performs filtering and sorting, and a Reduce procedure for 

summarizing the results  of the Map step. Hadoop [ 9], the 

open source MapR educe implementation, supports the 

execution of programm able user t asks. Its  effi ciency,  

however, is known to be poor wh en compared to parallel  

databases [10], and, when it comes to datacubes, speci fi c 

rast er dat a properties, such as Euclidi an neighborhood o f 

pixels, are ignored, and each pixel is processed individually,  

making it orders of magnitude slower [11].       

Google Earth Engine combines a cat alog of sat ellite 

imagery and geospati al datasets with analyti cs capabilities  

[12]. It builds on the tradition of Grid syst ems with fil es  

however, without providing dat acube paradigm. Based on a 

functional programming l anguage, without  advanced 

paralleli zation capabilities  (only ― embarrassingly parallel ‖ 

operations), users  can submit code which is  executed 

transparently in Google’s own distributed environment, with 

a worldwide private network. The method that we present,  

on the contrary, handles distribution of any operation, in any 

network. To the best  of our knowledge, no other framework 

achieves that in the dat acube world.   
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Q UERY PROCESSING  

Storage-wise, datacubes are split into units of access  

call ed tiles  [5], optimization which enables  effi cient  dat a 

retri eval by minimizing the amount of unnecessary 
information which is read from disk, by retri eving only the 

tiles affected by the query. Tiles of the same dat acube can sit  

on di fferent machines, which, as we will see in the following 

sections, enhances the level of parallelism in processing.  

Datacube operations are usually triggered via 

standardized web servi ces, such as WCS, WMS and WCPS  

[13]. However, these servi ces  are only the int erface to the 

client performing the operation, whil e the processing itsel f is  

handled at a lower level which enables optimized, effici ent  

execution. In rasdaman, the geo l ayer int ercepting the web 

requests representing datacube operations transl ates them 

into array database queri es, which are then handled by 

rasdaman’s query processing engine [14].  

For example, computing the NVDI over Europe, on the 

1
st

 of July 2018, using Sentinel data stored in a datacube 

with the same name, and returning the result as a NetCDF  

fil e, can be achieved with the following WCPS query:  

 

for $c in (Sentinel) return encode(  

   (($c.nir – $c.red) / ($c.nir + $c.red)) 

   [ Lat(35:70), Long(10:40), ansi (― 2018-07-01‖) ],  

  ― image/tiff‖)   

 

In this case, the dat acube has 3 dimensions corresponding to 

Latitude, Longitude and Time (here expressed using ansi 

coordinat e system) axes.     

Traditionally, in rel ational syst ems, queri es are modeled 

as query trees: t ree data st ructures representing relational  

expressions [7]. The tabl es involved in  the queri es are 

represented as l eaf nodes  and the operations are represented 

as internal nodes. Similarly, in datacube systems, datacube 

expressions can be modeled as  trees. The tiles touched by 

the query are represented as leaves, and the operations as  

internal nodes. 

Prior to evaluation, queri es undergo heuristic 

optimization based on rewriting rules (for example, subsets  

are pushed down in the query tree, in order to discard 

unnecessary data as  early as possibl e). Once heuristi c 

optimization concludes, cost-based approaches can be used 

to further explore execution alt ernatives. In the next  

sections, we present such an approach, which focuses on 

inspecting the cost of executing di fferent parts of the 

heuristi cally  optimized query t ree on di fferent  machines  

avail abl e in the network.      

COST MODEL 

In order to  evaluate di fferent  execution variants  of t he same 

query, a cost model has been est ablished, taking into account  

three key factors: the amount of dat a accessed, the amount of 

data t ransport ed over the network, and the amount o f 

processing. The processing costs are further di fferentiat ed 

into resource costs and time costs (e.g. averaging over 1GB  

of dat a sequentially has the same resource processing cost as  

averaging over 1GB  of data under parallel load because the 

same amount of CPU cycles is spent but has a higher time 

processing cost because it takes longer). In future, this will 

allow for di fferent optimization strategi es, such as  

minimizing response times, minimizing int ernal dat a 

transport, or optimizing overall servi ce load bal ance.  

Formally, the cost is defined as a function t aking as  

input a query tree, and returning the following quadruple:  

 Ca: data access cost, measuring the tot al amount of data 

read from disk in the evaluation of the input query. This 

is measured by summing up the sizes of data accessed in  

the leaf nodes of the query tree representing tile access.  

 Cr: processing resource cost, measuring the total amount  
of processing spent in  the evaluation of the query. This 

is measured recursively in the operation nodes of the 

query tree, the cost of the parent node being the sum of 

the processing resource costs of all children of the node,  

plus operat ed data si ze multipli ed by a const ant that is  

di fferent for each operation. The constant det ermines  

how much processing costs for a given operation on a 

parti cular machine (e.g. addition is  cheaper than square 

root), and can be approximated by running a micro 

benchmark at appli cation start. The final cost of the 

query is the cost of the root node. 

 Cp: processing time costs, measuring the total  

processing time spent in the evaluation of the query.  

Similar to  Cr, this is  measured recursively, with the 

di fference that  when t aking into account the cost of the 

children operations, instead of the sum, only the 

maximum one is considered.  

 Ct: transport costs, measuring the tot al amount of data 

going over the network. This is done by summing data 

sizes  of nodes representing subqueries  to remote 
machines, as well as the size of the query result.  

LOCATION AWARE PROC ESSING  

Given an array query tree, and a network, the goal is to  

determine the optimal execution location for each 

subexpression (or node), such that the overall cost is  

minimized. In order to effici ently represent the search space,  

we introduce a new data st ructure: location aware query 

trees. A location aware query t ree is a query tree where each 

query tree node is decorated with the set of possibl e 

execution locations. In the query execution pipeline, a 

location aware query tree is creat ed starting from a 

heuristi cally optimized query tree, by annotating all its nodes  

with a set of locations.  

For example, in a network with 3 machines  

, containing a dat acube A, which in  turn 

contains a single til e a, the query ― for $c in  (A) return $c +  

1‖ is represented by the following query t ree, where D 

represents the delivery node:  
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Making this tree l ocation aware is done by decorating 

each node with a set of possible execution locations. For 

example, the corresponding location aware tree that assumes  

that any node can be executed on any computer in the 

network is the following:  

 

However, not all possibilities are valid. For example,  

tile nodes (in this  case a ) can only be executed (i.e. loaded) 

from nodes on which they are stored, while t he root node,  

which delivers the result back to the user, must reside on the 

node on which the query was  issued. Furthermore, the node 

representing the const ant value 1 can always be executed on 

the same machine where its parent resides, without incurring 

extra costs. Assume tile a  sits on machine S2, and the query 

is executed on machine S1, the following refined location 

aware tree captures the above observations.   

 

          

 

The tree now indicat es that the + node can be executed 

on any node in the network. The next steps  are now to 

instantiat e the corresponding tree for each vari ant, compute 

the corresponding costs, and pick the one that is  the least  

expensive. However, in order to ensure that the tree can be 

in fact executed, the data delivered by the tile node a must  

be transported to the machine where the + node is to be 

evaluat ed, in case they sit on di fferent computers. A similar 

step must be performed with the result of the + node, to  

ensure t hat in  the end it reaches  the machine where the 

delivery node sits, so the result can finally reach the user.  

The transport ation of data is ensured by a speci al node 

(named T), which is added whenever a mismatch between 

the location of a parent node and the one of a child  node 

occurs, leading to the following execution candidat es.  

 

 

Using the previously discussed cost model, the engine 

can now rank the 3 candidat es: they all access the same 

amount  of data, and they all  perform the same amount o f 

processing. The amount of dat a transported through the 

network, however, is 1 tile for the E1 and E2 trees, and 2 tiles  

for the E3 tree, making it a l ess desirabl e candidat e. Thus, 

the engine will execute one of E1 and E2, which have the 

same cost. 

PRUNING STRATEGIES 

The method presented in the section above, whil e exhaustive 

in the number of possible location assignments for the query 

tree nodes, has the disadvantage of producing a potenti ally  

large number of candidat es in case the query produces a t ree 

with a large number of nodes, or in case the network is large.  

Heuristic st rat egies are used to reduce the number o f 

candidat es that need to be inspect ed. While presenting the 

exact details of the strategies is out of t he scope of this  

paper, we bri efly describe 2 of them, which have an 

increased practical rel evance:  

 Transport minimization: by pruning the execution 
locations of a node that are not part of the execution 

locations of its parent or children, the number of 

necessary network transfers is reduced [15]. This is 

rel evant especially when federations of dat acubes are 

involved, where transporting large amounts of data 

across dat acenters is not feasibl e.  

 Processing bal ancing: this strategy favors those 

candidat es that achieve an equal dist ribution of 

processing tasks in the network, and is rel evant in  

homogeneous environments with high bandwidth 

between the machines, such as clouds.  

Figure 1.  Query tree for ― $c + 1‖.  

Figure 2.  Location aware query tree.  

Figure 3.  Refined location aware query tree.  

Figure 4.  Resulting execution candidates E1, E2, E3. 
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CONC LUSION  

We presented a method that enables datacube engines to  

inspect and rank a l arge number of execution candidates,  

which allows det ermining suitable distri buted execution 
plans for each incoming dat acube query. While the set of 

possible candidates  is sometimes too large for all its  

elements to be inspect ed individually, heuristi c methods can 

be used for reducing it, depending on the parti cular situation.  

The optimization enables dat acube engines to effici ently  

exploit distributed infrast ructure in answering queries.  

A real -li fe use-case of the optimization can be observed 

in the federation which was set up between the C ODE-DE 

datacube precursor servi ce est ablished in the Big DataCube 

project [16], and the Al fred Wegener Institut e for Polar and 

Marine Research (AWI). Among others, t emperature 

datacubes are available at C ODE-DE, and SeaIce datacubes  

are available at AWI. In one of the use-cases, scientists need 

to compute the sea ice distri bution at di fferent t emperature 

intervals. The WCPS query that achieves that is presented 

below. Note that the involved dat acubes contain dat a at  

di fferent resolutions, and in di fferent  coordinate syst ems, so  

scal e and reprojection operations are required before finally  

combining them to obtain the answer:  

 

for $c in (SeaIce), $d in (T2m)  

  return encode( 

    coverage SeaIceByTemperature 

    over $temp t(-40:0) 

    values add( 

            scale(  

                       $c[ ansi("2018-01-01")],  

                            { Lat:"CRS:1"(0:360),  

                               Long:"CRS:1"(0:719) } )  

            * 

            (($d[ansi("2018-01-01")] -273.15) > $temp) 

           ) 

    , "csv") 

 

The query it erates  over t emperature values in the 

interval (-40, 0), in Celsius. At each st ep, a binary mask is  

determined from the temperature dat a, corresponding to  

temperature pixels having values exceeding the iterator 

value. The sea ice dat a is reproj ect ed and scaled to match the 

temperature dat a, then only pixels matching the binary 

temperature mask are considered. The values are then added 

to obtain, for each temperature st ep, the total sea i ce value 

corresponding to it.  

Because the setup is a federation, a st rat egy that  

minimizes  the amount of data t ransport ed between locations  

is used. The winning execution plan is one where the scaling 
and the reproj ection of the S eaIce dat a happens int ernally at  

AWI, balanced against the availabl e processing nodes, and,  

similarly, the temperature binary mask generation happens at  

CODE-DE, yielding 2 intermediary results, which must end 

up on the same machine for the next step of the computation.  

Out of the 2 candidat es, the binary masks is transport ed 

because of its small er si ze (1 bit per pixel), as well as its  

suitability for compression. The final computation happens  

in the AW I network, and, in case the query was originally  

performed at  CODE-DE, the final result, which is  just 40 

scal ar values, is transport ed back. This allows the user to  

execute the same query in any of t he 2 networks, without  

taking into account data placement, knowing that the engine 

will always pick an effici ent execution schedule.           
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