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Abstract—Server-side extensibility through dynamically linked
external code is a common method in relational databases. In
the field of Array Databases such User-Defined Functions (UDFs)
sometimes even represent the architectural cornerstone for array
functionality. On the downside, UDF implementation often suffers
from high coding complexity.

The rasdaman Array DBMS is a full-stack C++ implemen-
tation, so does not rely on some generic UDF mechanism. This
allowed designing such an API from scratch, with particular
emphasis on UDF coder convenience. The rasdaman UDFs rely
on the general C++ client API classes. Based on a straightforward
UDF interface definition adapter code is generated automatically.
Experimental evaluation shows encouraging results, and the
mechanism is going to be used in research and under operational
conditions. We present the approach and motivate it through
practical use cases.

Index Terms—array database, user-defined functions, ras-
daman

I. INTRODUCTION

Array Databases [1] [2] [3] [8] [24] close a gap in the
database ecosystem by adding modeling, storage, and pro-
cessing support on multi-dimensional arrays, also called dat-
acubes. Such “datacubes” appear as Spatio-temporal sensor,
image, simulation, and statistics data in all science and en-
gineering domains, and beyond. For example, 2-D satellite
imagery, 3-D x/y/t image time series and x/y/z geophysical
voxel data, and 4-D x/y/z/t climate data contribute to today‘s
data deluge in the Earth sciences. Virtual observatories in
the Space sciences routinely generate Petabytes of such data.
Life sciences deal with microarray data, confocal microscopy,
human brain data. Some experts consider matrices a suitable
paradigm for the processing of large graphs.

Obviously, all of these are candidates for Big Data, so
“shipping code to data” is indispensable. Declarative query
languages provide safer ways for such code shipping than
procedural code (such as python), but have certain limitations.
First, users may not want to rewrite existing algorithms in
the given query language, in particular, if complex simulation
or Linear Algebra operations are under consideration. Second
(and related), there may exist efficient, specialized packages
that should be made available as part of the database ser-
vice. Third, the query language may even not support some

operations, such as explicit loops which often are avoided
in database query languages to prevent a class of denial-
of-service attacks. Finally, sometimes functionality should be
provided for free use, but without disclosing the underlying
code.

In response to this, database languages early on have been
enhanced with User-Defined Functions (UDFs) [12] [13] [14]
so as to allow invocation of external code from within a query,
executing the associated code on the server through dynamic
linking or similar techniques. (We disregard UDFs imple-
mented in a query language like [15] does.) Distinguishing
criteria for UDF APIs are ease of development (“How difficult
is it to write a UDF?”), safety of the API (“How error-prone
is it? Are there simple debugging aids?”), power of the API
(“What kind of data can be exchanged?”), and performance
(“What overhead is encountered? Are UDFs integrated in
performance management, like optimization?”).

Array DBMSs have previously used UDFs to implement
array functionality. SciDB [17] centers around an modified
Postgres kernel where significant array functionality is realized
through UDFs. EXTASCID [19] similarly uses UDFs to map
array operations to some generic, array-agnostic parallelizing
kernel. Similar approaches are taken by PostGIS Raster [21],
Teradata Arrays [13], etc., all using generic UDF definition via
the system’s general object-relational capabilities. However,
we believe that classic mechanisms are not always optimal for
arrays as these have some characteristic properties that make
them different:

• As opposed to tuples or records the arrays considered
in Array Databases are huge, often exceeding the main
memory of the server. Therefore, tiles get stored, re-
trieved, and processed in a partitioned (“tile-based”) fash-
ion. UDFs may operate on arrays or partitions, depending
on the next facet.

• Only some array operations can be executed on partitions
naively, many important operations require for each array
cell computation a neighborhood of the cell; examples
include convolution kernels, matrix multiplication, and
regression.

• Arrays are not data types, but data type constructors (in
C++: templates), much like stacks and sets. Therefore, a
complete implementation through object-relational data
types is not possible. They will always need to be
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specialized in order to support a hardcoded set of array
type instances.

The rasdaman Array DBMS [16] follows a different ap-
proach in that it is a full-stack implementation in C++, without
any generic object-relational capabilities. The from-scratch de-
sign required gives the opportunity of rethinking mechanisms
to tune them to arrays. In the rasdaman UDF design handling
of partitioned arrays has been adopted directly from the C++
API classes which encapsulate details like partitioning and
extent management. Further, hints have been added allowing
the engine to adjust evaluation strategy.

In this contribution, we present the rasdaman UDF ap-
proach, discuss examples, and present a performance evalu-
ation. The results show that performance is very satisfactory
and can be easily scalable. The contribution of this paper is
a novel way of supporting array UDFs, including a thorough
evaluation considering both usability and performance aspects,
indicating that the approach taken is worth considering.

The remainder is organized as follows. In the next section,
we give a brief introduction to array handling in databases,
followed by the presentation of rasdaman UDFs in Section
III. State of the Art is discussed in Section IV. Finally, we
have an evaluation in Section V and Section VI concludes the
plot.

II. ARRAY QUERIES IN RASDAMAN

In this section, we give a brief overview of array queries;
for further details see [4]. The situation is complicated by
the fact that rasdaman has two query interfaces: the domain-
agnostic SQL-style rasql language and the domain-specific geo
datacube language, WCPS.

A. Database Query Model

Arrays in rasdaman are characterized through their number
of dimensions, their extent per axis, and the array cell data
type, which is a record structure. Along with this logical
definition, a tiling scheme and further physical parameters
can be fixed which apply to array instances of that type.
This model is embedded in the relational model in that array
instances appear as attribute values in some relational tables. In
other words, an array type can serve to define a table column.

The query language, rasql, adds declarative array opera-
tors to SQL to allow retrieval, filtering, and processing on
arrays. The language, which in 2019 has been adopted almost
verbatim by ISO SQL [1], is based on Array Algebra [3].
At its heart, it defines two second-order operators, an array
constructor and a condenser (i.e., aggregator), together with
a series of convenience operators derived from those generic
ones. As usual in SQL, arbitrarily complex expressions can be
built by combining arrays, scalars, etc.

The constructor takes an n-D array extent and an expression
and builds an array whose cells are filled by evaluating the
expression for each array position. For example, the following
creates a 100x100 matrix filled with the pairwise difference
of cells taken from existing arrays a and b:

MARRAY p in [ 0:99, 0:99 ]
VALUES a[p]-b[p]

This can be abbreviated as a-b. Any general index com-
putation is possible, though, such as determining changes in
an x/y/t timeseries tx:

MDARRAY x in [ 0:99 ],
y in [ 0:99 ],
t in [ 0:99 ]

VALUES ts[x,y,t]-ts[x,y,t-1]

The condenser is somewhat dual in that it iterates over some
array area and aggregates based on some aggregation function
which is one of the usual suspects count, sum, avg, min,
max, some, and all. The following expression determines
the maximum value from n-D array a:

MDCONDENSE max
OVER p in sdom(a)
USING a[p]

Again, there is a shorthand for this simple case, written as
mdmax(a). And as before, general expressions and address-
ing schemes are possible.

Altogether, a typical array SQL query looks like below.
Table LandsatImageTimeseries contains an attribute
data constituting an array with many satellite image spectral
bands, including red and nir. From this, the difference of
two bands is computed for every tuple, restricted to the x/y/t
coordinates indicated in brackets. The result gets encoded in
NetCDF, so the query response overall is a (possibly empty)
set of NetCDF files.

SELECT encode( ls.data.red - ls.data.nir)
[ x0:x1, y0:y1, t0:t1 ],
"application/netcdf" )

FROM LandsatImageTimeseries as ls

This language allows expressing operations on vectors,
matrices, and tensors up to the Discrete Fourier Transform.
What cannot be expressed are algorithms that are inherently
iterative, such as matrix inversion. Adding iterative power to
the language, ultimately enabling complete Linear Algebra,
while retaining termination guarantees is an area of active
research [8].

B. Geo Service Query Model

Specifically for geo services a business layer, programmed
in Java, realizes the semantics of space-time, knows about
regular and irregular grids, etc. Its main interface is the Open
Geospatial Consortium (OGC) Web Coverage Processing Ser-
vice (WCPS) geo datacube analytics language [9] [10]. WCPS
at its heart has the same processing model as rasql, with two
differences: the aforementioned addition of space/time seman-
tics, reflected by the data model defined in the OGC Coverage
Implementation Schema (CIS); and a different syntax flavor,
geared towards XQuery rather than SQL to better integrate
with the mostly XML-based geo metadata handling. Inside
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rasdaman, with the help of some geo metadata, WCPS queries
are translated into rasql queries. We mention WCPS because
UDFs have to support this layer as well, as we will discuss
later.

Rather than introducing the language, the following example
may serve to give a flavor: ”From MODIS satellite scenes M1,
M2, M3, return the difference between the red and nir (near-
infrared) bands, encoded as TIFF - but only those where nir
exceeds 127 somewhere.”

for $c in ( M1, M2, M3 )
where some( $c.nir > 127 )
return
encode( $c.red - $c.nir,

"image/tiff" )

Figure 1 shows the result of a WCPS request, visualized in
Microsoft Cesium.

Fig. 1. Sample WCPS query result.

C. Architecture

We present a very brief overview of the rasdaman architec-
ture (Figure 2), as much as is needed for the UDF discussion
in the next section. More details can be found in [7] and [5].

Fig. 2. rasdaman architecture overview.

The rasdaman architecture resembles a standard DBMS
architecture implemented in heavily templated C++ with ev-
ery component specifically optimized for tiled arrays. These

components include client APIs (such as C++), query parsing,
optimizing, and execution, storage and index management, and
several more. Queries are translated into logical trees, then to
physical trees, and finally to executable code.

Several languages are supported by rasdaman APIs, in-
cluding C++, Java, and JavaScript. The C++ API, which
is compliant with the ODMG object database standard [6],
centers around class GMArray, General Multi-Dimensional
Array. An object of this class contains its structure definition,
together with a tiled representation of the array. A cloud of
auxiliary functions adds convenience to array handling. This
API normally is used to create arrays (maybe by reading
contents from files) and forward these for insertion into the
database, or to receive arrays in the client for visualization or
further processing by the client.

III. DYNAMIC EXTENSIBILITY OF ARRAY QUERIES

UDFs are provided on two levels, the geo datacube layer
with its WCPS language and the generic database layer with
its rasql language. Given the implementation languages of both
layers, Java and C++, UDFs need to support these both. We
inspect them in turn.

A. rasql UDFs

UDFs in rasdaman can be used in place of any function
invocation in both WCPS and rasql. Organisationally, UDFs
are grouped into bundles of functionality with designated
namespaces. In a query, namespace and function together serve
to identify the function (Figure 3).

Fig. 3. rasql UDF architecture overview.

The following two sample rasql queries may illus-
trate syntax and expression embedding, assuming functions
math.fib and stat.avg:

SELECT A / sqrt( math.fib( 10 ) ) FROM A
SELECT stat.avg( A[0,*:*,*:*] ) FROM A

Definition of a UDF follows common syntax:

CREATE FUNCTION namespace . funcName
( typeName1 var1, ..., typeNameN varN )
RETURNS typeName
LANGUAGE cpp
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codeSpec

The code can be provided in place, such as in the following
definition:

CREATE FUNCTION math.fib ( ulong n )
RETURNS ulong
LANGUAGE cpp
BEGIN
return n <= 1 ? n

: fib(n - 1) + fib(n - 2);
END

The code provided gets compiled into a dynamic library which
gets loaded upon invocation of the UDF.

Alternatively to inlining the code, a reference to some
existing dynamic library can be given, assumed to sit in a
designated system directory. An example would be:

CREATE FUNCTION stat.avg( array a )
RETURNS ushort
LANGUAGE cpp
EXTERN "stat/average.so"

The code realizing this function obviously must adhere to
the function signature indicated in the definition; for the above
example this would be

extern "C"
unsigned short avg( r_GMarray *a );

Additional adapter code gets generated automatically before
compiling and linking; this is necessary for direct plugging
into the query operator tree. Common atomic types, such as
numbers and strings, are handled in a straightforward manner.
Data type array internally is interpreted as an object of C++
type GMArray. The extern "C" keyword inhibits C++
name mangling.

Two keywords give hints to the evaluation engine and opti-
mizer. DETERMINISTIC hints the optimizer that the defined
function behaves in a deterministic manner, i.e.: it will return
the same output on the same input every time; when avoiding
this flag the optimizer assumes that the function behaves
nondeterministic, through side effects like file read/write, and
cautiously avoids some rewriting of the expression.

If NONBLOCKING is specified then the engine will optimize
execution by generating a series of UDF invocations, one
for each tile. Obviously, such a situation is amenable to tile
streaming and can be nicely parallelized, commonly referred to
as ”embarrassingly parallel”. Keyword BLOCKING indicates
that an array must be presented to the UDF in its entirety;
examples include convolution functions which address into a
neighborhood of each pixel and, hence, may miss cells sitting
in another tile.

Convenience functions allow the administrator to manage
the UDFs, such as listing UDFs:

SELECT VIEW FUNCTION LIST
SELECT GET FUNCTION math.fib

B. WCPS UDFs
Queries arriving via rasdaman’s geo frontend, in the WCPS

language, need to have UDF support as well. Two cases can
be distinguished (Figure 4):

• The UDF call actually addresses a rasql UDF; in this
case, the call has to be translated while doing a proper
translation from the geo objects to arrays.

• the UDF call refers to code actually executed in the geo
layer, so directly invoking Java code.

The situation here is different from the C++ environment.
The WCPS engine, implemented in Java, runs in a servlet con-
tainer and, therefore, is subject to the rules of this framework.
Invocation of a UDF in a WCPS query is straightforward as
the following example shows:

for $c in (Sentinel)
return
encode( math.Quantile( $c.green, 1000 ),

"json" )

The UDF code first gets implemented in the Java language;
it must realize the interface

WcpsResult
handle( List<WcpsResult> arguments )

where WcpsResult is a helper class. As before, UDFs are
identified by a package and a function name. By convention,
the Java package name represents the namespace, the Java
class name represents the function name. Also as before, the
corresponding jar file needs to be provided in a designated
directory, known to the servlet container. No separate regis-
tration is required.

Fig. 4. WCPS UDF architecture overview.

IV. STATE OF THE ART

In this section, we will go through what do the major Array
DBMS players have to offer in UDF functionality.
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A. General UDFs

UDFs have been introduced commonly with object-
relational database extensions, emerging from object-oriented
databases [6].

Paradise [11] has a very general, powerful UDF mechanism.
However, writing and coupling UDFs is described as highly
involved even by the Paradise developers themselves.

Parallelization of UDF invocations in an object-relational
DBMS has also been studied by Ng et al [12], however not
in the context of tiled arrays. Teradata has reported about
dynamic scheduling of UDFs evaluating BLOBs, so large
objects like arrays are, but again without specific language
semantics nor data type knowledge applied [13].

B. Array UDFs

From the large and increasing wealth of array processing
systems [2] we explicitly focus on Array DBMSs offering
common database functionality on arrays such as a query
language, optimization, concurrency control, storage manage-
ment, etc. These systems may be subdivided into two groups.

• Full-stack Array Databases. Systems implemented from
the scratch, e.g., rasdaman [16], SciDB [17], ChronosDB
[18].

• Add-ons to existing database systems. May be im-
plemented by adding extra layers to existing DBMSs
(e.g., EXTASCID [19]), performing direct DBMS kernel
coding (e.g., SciQL [20]), or providing object-relational
extensions (e.g., PostGIS Raster [21], Teradata Arrays
[13], Oracle GeoRaster [22]).

SciDB is an Array DBMS following the tradition of ras-
daman [2]. It features two query language interfaces: the Array
Query Language (AQL) and the Array Functional Language
(AFL). It runs on top of a modified Postgres kernel plus UDFs
(User-Defined Functions) implementing array functionality
and also effecting parallelization. UDFs themselves are defined
using AFL. Checking at the latest open-source version at the
time of this study, SciDB Community 19.11 [25], the current
support for UDFs comes in the form of user-defined macros
written into a text file that is later loaded into SciDB by
using the load_module operator. Below an example of a
user-defined macro text that calculates the Euclidean distance
between two points [26]:

distance(x1,y1,x2,y2) = sqrt(sq(x2-x1) +
sq(y2-y1)) where
{

sq(x) = x * x;
};

Loading a module into SciDB syntax is as follows:

load_module(’module_pathname’);

Once loaded in SciDB, the user can invoke the function by
specifying the array, or a portion of it, and the user-defined
macro name as parameters to the build function which will
produce a result array. The following is an example of user-
defined macro invocation:

<AFL> build(<v:double>[i=0:2; j=0:2],
distance(i,i,j,j));

User-defined macros in SciDB provide the expressive power
to extend the functionality of the Array Database, but only
within the boundaries defined by the language itself and the
functions that are already provided by the DBMS. To the best
of our knowledge, there is no support for user-written UDFs
in some external language comparable to the approach we
suggest. Consequently, full procedural power is not supported
as the SciDB language does not contain any explicit iteration
constructs; rasdaman, in contrast, allows the full power of the
C/C++ language. SciDB, therefore, requires implementation
through an extra layer on top of the database capable of
implementing iteration constructs. Performance analysis of the
SciDB UDFs has not yet been published.

EXTASCID is an extensible system for scientific data
processing [14]. It is capable of supporting natively both arrays
as well as relational data. Complex processing is handled by
a meta operator that can execute any user code. EXTASCID
is built around the massively parallel GLADE architecture for
data aggregation. It also provides a robust array data storage
model, but it some shortcomings like no portable window-like
operator for UDFs.

”Raster” is a data type in the object-relational PostgreSQL
geo extension, PostGIS, for storing and analyzing geo raster
data [2]. Like PostGIS in general, it is implemented using
the extension capabilities of the PostgreSQL object-relational
DBMS.

Oracle GeoRaster is a feature of Oracle Spatial that allows
storing, indexing, querying, analyzing, and delivering raster
image and gridded data and its associated metadata. [2] One
important limitation for Oracle GeoRaster UDFs is that they
do not allow to pass BLOBs in and out of UDFs.

As mentioned before, Teradata has reported about dynamic
scheduling of UDFs evaluating BLOBs [13]. Remarkably,
in this context, Teradata does not handle UDFs in its V2
Optimizer.

Optimization of array queries, also involving UDFs, has
been studied in [23], albeit without a performance analysis
for UDFs. While rasdaman performs such optimization too;
this is out of the scope of this paper. In an Array DBMS
geared towards astronomical data, the Microsoft SQL server
has been used, with UDFs heavily used [24]. However, no
rigorous performance evaluation is given so its efficiency
remains unclear.

Altogether, while UDFs have been used on arrays in other
systems it still remains unclear how efficient they are. The
comparative benchmark in [2], revealing that rasdaman can be
up to 304x faster than related systems like SciDB, suggests that
UDFs in many systems incur a visible performance penalty
indeed.

V. EXPERIMENTAL EVALUATION

In this section, we describe a performance evaluation of the
UDF API. The question to be answered is:

• How much overhead is created by using a UDF?
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A. Test Design

We conducted a series of experiments by measuring the
elapsed time of passing arrays of 1-dimensional randomly gen-
erated 8-bit unsigned integers, char atomic type in rasdaman,
into a UDF and the native rasdaman implementation of a max
function that returns the maximum of a given input array. Since
we could not modify the source code we adopted the following
strategy. Starting from the test arrays, randomly generated
binary files were created, in powers of ten increments up to
1GB, using the pseudorandom number generator special file
/dev/urandom which is present in most Unix-like operating
systems. Once created, these files were ingested into rasdaman;
one collection per file with no tiling in order to avoid possible
tile retrieval and memory allocation overhead. Below we show
the object metadata retrieved from the dbinfo() function in
rasdaman for the 100 bytes char collection. Notice tileNo = 1;
and the totalSize and tileSize are equal. More information on
rasdaman dbinfo() function and data types in rasdaman Query
Guide [4].

Query result collection has 1 element(s):
Result object 1: {

"oid": "133121",
"baseType": "marray <char, [*:*]>",
"setTypeName": "GreySet1",
"mddTypeName": "GreyString",
"tileNo": "1",
"totalSize": "100",
"tiling": {

"tilingScheme": "regular",
"tileSize": "100",
"tileConfiguration": "[0:99]"

},
"index": {

"type": "rpt_index",
"PCTmax": "4096",
"PCTmin": "2048"

}
}

The next step was to create the UDF function, the objective
of this function was to keep it as simple and concise as possible
so no unnecessary overhead time could be introduced into
the measurements. Implementation of this UDF char_max()
function in C++ is as follows:

#include "rasodmg/gmarray.hh"
#include "raslib/basetype.hh"
#include "raslib/odmgtypes.hh"
#include "raslib/error.hh"

extern "C"
unsigned char char_max(r_GMarray* m)
{
const auto size =

m->spatial_domain().cell_count();

unsigned char* mv =
reinterpret_cast<unsigned char*>

(m->get_array());

return *std::max_element(mv, mv + size);
}

Recall from rasql UDFs subsection, data type array is in-
ternally interpreted as an object of C++ type GMArray by ras-
daman. In this implementation we used the max_element()
function from the C++ standard library which returns a pointer
to the maximum value of the array contained in the GMArray
object. Complexity of max_element() is linear in one less
than the number of elements compared.

After compiling and generating the shared object .so file,
we created the UDF inside rasdaman. When creating the
UDF we used the default Blocking feature which specifies
that the function needs to see all tiles in order to run, and
the Determinism feature which specifies the same result will
always be delivered when invoked with the same parameters.

create function char_max(array m)
returns char
language cpp
extern "char_max.so"’

This char_max() UDF was later benchmarked against
rasdaman built-in max_cells() function that, in a very
similar way, returns the maximum of all cell values in the
argument array.

As mentioned before, it was not possible to modify the
source code, so we adopted the following strategy. We mea-
sured the overall elapsed time of both the parameter passing
between the database engine and UDF code; and the execu-
tion of the code itself. Measurements were taken using the
following query:

SELECT test.char_max( TestObject )
FROM TestObject

Where TestObject refers to the name of the collection where
the 1D char arrays are stored. This query is run several
times and the elapsed run time is measured. To measure
the elapsed run time, we used the Linux shell keyword
time and calculated the mean of all elapsed times for UDF
char_max() and rasdaman max_cells(). Initially, we
hypothesized that parameter passing time could be isolated
and therefore calculated by first defining the function to return
a scalar, hence the decision of using an aggregation function
such as max, in order to not incur into overhead time as a result
of encoding the result and transferring it to the client. We also
hypothesized that, to avoid overhead from the query engine,
the execution time difference between the built-in function
max_cells() and the UDF variant could be calculated and
thus the overall query overhead eliminated. However, given the
fact that rasdaman native max_cells() implementation is a
generic algorithm and our UDF implementation is specialized
for chars, we got elapsed time measurements were UDF
outperformed the native implementation; meaning parameter
passing couldn’t be effectively calculated. We considered also
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adapting our UDF to make it more generic but discarded the
idea as it would bring further complexity into the algorithm
that would have not been present in the native implementation.
Given this, we, therefore, decided to benchmark the elapsed
time of both UDF and native implementation separately and
study their behavior as data volume increased.

The computer used for testing was a Dell Inspiron 15
7000 Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz with one
physical processor and 2 cores, 4 threads with 8GB of RAM, a
page size of 4096 bytes, 128GB of SSD memory, and a swap
file of 20GB. The operating system was Ubuntu 18.04.5 LTS
with rasdaman Enterprise v10.0.

All queries have been executed from a cold state, with the
DBMS restarted and file system caches cleared before every
run. Rasdaman was used in –experimental mode in order to
make use of the latest engine features.

B. Results and Analysis

Our experiments show almost constant execution time until
we reach the 10-megabyte threshold (107); after this point,
execution times grew linearly; which can be expected because
data is being copied and consequently its transport dominates
the cost. For better visualization, we show the execution times
in a logarithmic scale as the data volume increases.

Figure 5 compares the execution time of both the rasdaman
max_cells() and UDF char_max() implementations.
Notice from 1-byte (100) to 1KB (103) rasdaman outperfoms
UDF max implementation by a margin of 7.07 milliseconds (at
1 byte) to 0.1 millisecond (at 1KB), then from 10KB (104) to
100KB (105) UDF performs better, rasdaman later outperforms
once again at 1MB (106); and finally from 10MB (107) to
1GB (109) UDF clearly outperforms rasdaman as data volumes
increase. With larger amounts of data, UDF can play out in
its advantage.

It is a well known fact in classical databases [27] that
significant time is spent latching and copying data. This could
be avoided in order to keep constant time behavior with all
data sizes. A possible method could be to execute the query
twice so that in the second run all the data is already sitting
on main memory and no data copying cost is measured, the
resulting elapsed time will only consist of parameter passing
through the GMArray object.

It also worth considering the fact that UDF char_max()
is a specialized implementation, only deals with chars, and
rasdaman max_cells() is a generic implementation that is
designed to work with any data type. Specialized implemen-
tations are known to outperform generic ones as algorithmic
complexity is reduced and thus execution time will be reduced
as well.

In the case of rasdaman, if we subtract the noise of the
homegrown UDF implementation; it will not be faster than
rasdaman as we can see on the results produced by the first 4
experiments on Figure 5.

In summary, the rasdaman implementation of UDF linkage
turns out rather efficient as the benchmark shows, with an
invocation overhead of 7.07 milliseconds. Parameter passing

Fig. 5. (Log) Mean Execution Time of rasdaman char_max() vs. UDF
max_cells().

is negligible up to a size of about 10 megabytes (107) and
then grows practically linearly with input parameter size,
which we find reasonable. Altogether, UDFs can be used
freely and without a performance impediment also for complex
invocation patterns with many calls to the UDF.

VI. CONCLUSIONS

In this contribution, we have presented an interface for C++
UDFs as implemented in the rasdaman Array DBMS. As a
further result, we presented a benchmark for UDF implemen-
tation; to the best of our knowledge, such a benchmark did
not exist yet. As it is non-intrusive to the database kernel it
can be transposed to any array-handling DBMS.

The need for implementing a UDF API from scratch,
as opposed to re-using existing UDF mechanisms, gave the
opportunity to rethink some principles. One design decision
was to reuse the existing C++ client API for interfacing of
the UDF code with the DBMS engine so that, aside from
atomic data types, only a single object class for general multi-
dimensional arrays needs to be known by the developer.

The specific nature of arrays - being substantially larger than
tuples and database pages, and having a clearly defined neigh-
borhood relation between pixels which operations heavily rely
upon - required to differentiate between blocking operations,
where array tiles are collected into one object before UDF
invocation, and non-blocking operations, where tiles can be
streamed into UDFs, possibly in parallel.

Current work includes linking in Linear Algebra packages
into rasdaman so that Linear Algebra becomes available on
large multi-dimensional arrays, embedded in the general ar-
ray query language. This is applied, among others, in the
DeepRain project where rain forecast in mountainous areas
is improved through Deep Learning techniques with the ras-
daman Array DBMS adding scalability in a supercomputing
environment.
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