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School of Computer Science & Engineering
Constructor University

Bremen, Germany
dmisev@constructor.university

2nd Mikhail Rodionychev
School of Computer Science & Engineering

Constructor University
Bremen, Germany

mrodionych@constructor.university

3rd Peter Baumann
School of Computer Science & Engineering
Constructor University Bremen, Germany

pbaumann@constructor.university

Abstract—Array databases specialize in storage, management,
and query processing on massive multidimensional array data
such as satellite image timeseries, weather forecast models, IoT
sensor measurements, medical imaging data, etc. Some of the
values in this data may be ”null” for a variety of reasons, such
as unknown, known false, etc. The DBMS must handle null values
correctly and efficiently.

As of today, the effects of different data structures for
representing null values on query processing in array databases
have not been systematically studied. As a consequence, it is not
clear what the optimal way for handling null values is.

In this paper, we measure how four different methods for
encoding null values perform across most common categories
of array operations. The result is a comprehensive overview,
publicly available in open source, providing relevant insights into
the performance characteristics of these data structures allowing
to discern which among them offers the most optimal approach
for representing null values in an array processing context.

Index Terms—null values, array databases, performance
benchmark

I. INTRODUCTION

Null is a special marker commonly used in databases to
indicate non-existing data values or, more generally, data that
should not be considered in computations such as aggrega-
tions. A variety of reasons exist for such missing values. In
multidimensional geo data, for example, they can arise when
a sensor detects a faulty reading, no value is delivered at all
(maybe due to transmission problems), no value is applicable
to a position (such as sea surface temperature measurements
on dry land positions), or introduced through some common
operations such as reprojection which warps the data grid.

While in many data structures, such as sets, it is sometimes
enough to not store such data, they form a particular problem
in arrays where, by definition, every cell inside the array has
a value. Simply dropping that cell from the array could shift a
lot of values into a wrong position. On implementation level
this is also true most of the time, with some exceptions as we
will see in the next section.

The term dense array characterizes arrays with relatively
few or no null value within its spatial domain; in a sparse
array, conversely, the null values dominate. For example,
OLAP datacubes are generally sparse with some three to five

percent non-nulls, whereas satellite images are usually dense
as most pixels hold sensor values. Dense array have some
value for every coordinate within the spatial domain, because
for efficiency the coordinates are implicit and not separately
materialized. Hence, even values which are null are present in
the array data, and some mechanism for marking these values
as null is necessary.

Operations on arrays, therefore, must take into account the
null status of each value. The effects of null values on the
result varies depending on the operation on hand. Based on
that, operations can be aggregated into several more general
categories, which form the basis for our benchmark.

Inevitably, the system performance additionally depends on
the data properties and mode of operation execution, and not
just what operations are performed. Data sparsity, i.e. the
percentage of null values in the array, can have significant
effects on performance characteristics depending on how the
null values are encoded. Another aspect to consider is the
data size, which can reveal differences between more and less
compact null value representations. Finally, it is necessary to
take into account how the execution of operations (serial vs.
parallel) affects performance.

In this paper we present a systematic, scientifically rigorous
benchmark of four methods for null handling: plain boolean
arrays which are widely used [1]–[7], bit-packed version of
boolean arrays with the standard C++ implementation and the
CRoaring bitset_t, and Roaring compressed bitmaps [8].
All of the benchmark code has been published as open-source
[9].

The paper is organized as follows. In the next section we
inspect the state of the art of null value handling. Section III
presents a comparative benchmark of several null encoding
schemes under typical array operations. Results are discussed
in Section IV. The plot concludes with Section V.

II. RELATED WORK

A. Tools

A plethora of different specifications, standards and soft-
ware implementations need to handle null values: from
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databases, data processing tools and frameworks, to program-
ming languages. In this paper we are particularly interested in
null values in the context of array data, so we will focus on
software in this space, especially array databases.

The category of array databases was pioneered by rasdaman
(”raster data manager”) being the first database system with
a comprehensive archtecture for storage, management, and
declaratively querying of massive multidimensional arrays
[10], [11]. It is available as an open-source edition as well
as an enterprise edition suitable for large-scale, federated
commercial deployments. Both have generally the same inter-
faces, with the query languages based on the ISO SQL/MDA
[12] and OGC WCPS [13] standards; internally, the two
versions differ with respect to null value handling. In rasdaman
community a null value set can be associated with a persis-
tent array, which is then propagated through operations and
checked while processing each of the operand(s) array values
to determine the null values [14]. In rasdaman enterprise when
an array is loaded from disk, a null mask is generated as a
boolean array of same shape and size as the array [15].

SciDB is another major array DBMS with a full-stack
implementation similar to rasdaman [16]. SciDB encodes the
null status embedded in the array itself. The array data is split
into variable segments which may be runs of the same value
(a compression technique known as Run-Length Encoding, or
RLE), non-RLE literal list of values, or runs of one or more
null values [17].

TileDB is a library for storage and management of dense
and sparse arrays [18], which encodes null status of array
values as a separate validity array persisted alongside the array
itself [2].

Across open-source relational databases there are two gen-
eral variations depending on how they organize data, row
and column-oriented architectures. PostgreSQL stores the null
status in a separate bitmap per row of values [19], [20], and
MySQL does the same in its InnoDB storage engine [21].
SQLite is only slightly different: a separate list of values
encode the type of each field in a row, and one of the possible
values is reserved for null [22]. Column-stores on the other
hand are closer to array databases as they store table columns
contiguously; all values in a column are of the same type, so
the whole column can be thought of as an array. Vectorwise
encodes null status of nullable columns as a separate boolean
column, and rewrites queries to consider both columns during
evaluation [6]. ClickHouse also stores the null status as a
boolean array [7]. Apache Druid is similar, except it uses a
bitmap corresponding to a particular column segment [23], as
does DuckDB [24].

Support for nulls across data formats varies depending
on how general they are. Apache Arrow is, at its core, an
in-memory columnar format specifically designed for use
in analytic database systems and data frame libraries (i.e.
very applicable for array processing applications); nulls are
encoded in bit vectors separately from the data columns [25],
[26]. Apache Parquet, a columnar-oriented storage format, has
native support for nulls which are stored separately from the

data and RLE-compressed [27]. A similar storage format is
Apache ORC, which stores and compresses a null bitmap
separately from the data [28]. The NetCDF format for array-
oriented scientific data allows specifying a FillValue attribute
which is used for unwritten data, and a valid range interval
bounding the valid values [29]. Other more image-oriented
formats, such as TIFF, JPEG, or PNG, do not generally have
a mechanism for embedding information about nulls. Software
tools, such as GDAL, typically try to add a nodata status within
the metadata or as a companion mask file [30]. ArcGIS Pro
is popular GIS software that supports either storing a separate
null mask, or adding a special NoData value which may trigger
type promotion if the array contains all values in its type range
[31].

In NumPy arrays that may have null values are called
masked arrays. The null mask is a separate boolean array in
which a true value indicates that the corresponding array value
is a null value [32]. A MaskedTensor works in the same way in
PyTorch [4]. TensorFlow’s boolean mask is similar, with the
caveat that it can be of lower dimension than the corresponding
tensor, which allows for encoding the null status of whole
slices as well [5].

In MATLAB missing data are encoded inline, either as
NaN values for floating-point arrays, or a special keyword for
other data types [33]. NA (not available) values are similarly
encoded inline in R, with a special double value for floating-
point values, and C’s INT MIN for integer values [34].

B. Benchmarks

Multiple benchmarks of array databases and related systems
have been published including [35]–[42], but none addresses
null values. To the best of our knowledge this work represents
the first benchmark focusing on null values in array databases.
Therefore, we reach out further and inspect null benchmarking
in relational databases and further tools.

The authors in [19] propose a more efficient storage format
for very sparse relational data, and benchmark it against vanilla
PostgreSQL null value encoding and a PostgreSQL modified
with ”positional” null value scheme (all fixed-size fields are
materialized, including the null ones). This work is specific to
row-oriented relational databases and highly sparse data.

Treatment of null values in the context of sparse data in
column-store databases has been considered in [43]. Abadi
extended C-Store with three methods for handling nulls de-
pending on the column sparsity. In all cases the positions of
non-NULL values are separately encoded, as a list of positions
for very sparse data, a bitmap for intermediate sparsity, or
position ranges for low sparsity. A comparison to naive C-
Store implementation that materializes null values inline with
the column data shows linear improvement as the sparsity
increases. The benchmark is limited to a single query type
that focuses on selecting data from disk.

In [44] the authors perform a performance and space-
efficiency evaluation of two popular column-oriented storage
formats, Parquet and ORC. The outcome is a set of recom-
mendations on how future such formats can be designed to fit
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better on modern hardware and real-world datasets. Sparsity
is considered in designing the benchmark workloads, but null
handling is not benchmarked nor discussed. More relevant
is the work done in [45] which evaluates suitability of the
column-oriented formats Apache Arrow, Parquet and ORC for
direct use in an analytical DBMS. Arrow is especially close
to our use case as it is tailored for in-memory data encoding
and processing. Null handling is not specifically considered,
however.

III. NULL HANDLING BENCHMARK

A. Null Encodings

Based on the survey in Section II-A and research on related
work in Section II-B, we narrowed down the candidates for
benchmarking to the following data structures for encoding
null status of array values.

BOOLARRAY: A boolean array of same size as the asso-
ciated array where a true value means the corresponding data
value is null. This is in use by many of the tools covered in
Section II-A, including rasdaman enterprise, TileDB, NumPy,
PyTorch and TensorFlow, and Vectorwise and ClickHouse. The
key to its widespread use is that it is the most straightforward
implementation-wise. It may also be advantageous to more
streamlined, vectorized operation processing. The main disad-
vantage is that it takes up a significant amount of space (null
status of one value per byte), as much as the data itself in case
of 8-bit integer arrays.

BITVECTOR: A bit vector improves on BOOLARRAY by
packing 8 indices per byte to reduce space requirements
by 8x. Considering that much of the software dealing with
arrays is implemented in C++, we specifically selected the
C++ std::vector<bool> in this case, which is readily
available in the C++ standard library.

ROARINGU: Roaring bitmaps is a well-optimized library
for bitmaps for 32-bit and 64-bit integers [8]. This case refers
to CRoaring’s bitset_t, which is a conventional uncom-
pressed bit vector like BITVECTOR. The implementation is
different enough from BITVECTOR to warrant its inclusion.
Most significantly, the bitset is stored in contiguous memory,
unlike BITVECTOR which makes no such guarantees.

ROARINGC: Bitmap compression offers further space re-
duction, with generally little performance penalty. Some of
the software covered in Section II-B uses standard RLE
for compressing bitmaps, which is already a good solu-
tion especially in very sparse or very dense data. However,
Roaring compressed bitmaps are overall considered the best
specification for bitmap compression [46], so we decided to
focus on Roaring. Specifically, we benchmark CRoaring’s C++
Roaring data structure which is specifically tailored for 32-
bit integers. As virtually all software for array management
and processing splits arrays internally into smaller array tiles,
a 32-bit index space is sufficient; support for 64-bit integers
is nevertheless available as a separate Roaring64Map type
if needed.

We cover only solutions that explicitly encode the positions
in the array which are null. Alternatives which in every

operation verify null status by checking membership in a null
set, such as in rasdaman community (flexible), or MATLAB
and R (fixed null sets), are left out for several reasons:

1) One or more values from the valid type range of values
must be allocated as null values, which is not always
possible and may require expensive type promotion.

2) It is possible to incorrectly convert non-null values into
null values, e.g. if the null set is 0 then 1 − 1 will
incorrectly result in a null value in the result.

3) It is difficult to correctly compare against the other
encodings as they do not require any reference to the
array values to calculate the result null masks.

B. Null Operations

Several operation categories can be defined based on how
null masks are used and propagated into the result.

Import: To handle external data, a DBMS or other tools
have to import it from the original format into its internal
data structures. As it is not practically feasible to consider all
possible data formats, we use a fixed representation of boolean
array for external null values (i.e. same as BOOLARRAY) and
measure the time to convert into each of the null encodings.
The first three cases are implemented by iterating through the
external null mask and copying the set bits into the internal
null mask. For ROARINGC, however, it was more efficient to
first create an intermediate array of null value position indexes,
which is then bulk-loaded into the Roaring bitmap.

Export: This is the opposite operation: data is exported
from the internal datastructures into a data format under-
standable by other software. We measure converting each
null encoding representation to a boolean array. This is es-
pecially efficient for BOOLARRAY, as it is a fast memory
copy. BITVECTOR and ROARINGU require extracting the null
statuses index-by-index, while ROARINGC supports iteration
over the null value positions.

Serialize: This operation is needed to store null values on
disk or send over the network in the context of distributed
applications. ROARINGU stores the data in contiguous storage,
so it can be serialized efficiently. ROARINGC provides specific
API for this purpose, which we utilize in the benchmark. Size
has large impact, so in the other two cases we implemented
efficient packing of eight null statuses into a single byte. In
all cases the result is written to a binary file on disk.

Deserialize: This is the inverse operation of Serialize,
allowing to read back data from disk or received over the
network. The benchmark tests reading the serialized file from
disk and reconstructing the null mask.

Unary: Unary induced operations are overloaded on array
arguments, in which case they apply to each array cell in turn.
For example,

√
A is evaluated as

√
A[0],

√
A[1], and so on.

Typically the most efficient implementation of such operations
is to disregard the null statuses to avoid costly branches, and
simply apply the operation to all values equally. The null mask
is usually copied in array databases, where in complex query
trees data is shared across multiple operators, so we measure
copying a null mask in the benchmark.
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(a) ERA5-Land climate data with valid data
only over land mass (65% sparsity).

(b) Clouds on a Sentinel-2 satellite image are
null values (22% sparsity).

(c) Sentinel-1 satellite scene has nulls as a
result of orthorectification (28% sparsity).

Fig. 1: Sample null distributions: At the bottom of each null mask a distribution is shown of the nulls created by (top) 1D
row-major linearization, (middle) RANDOMRUNS distribution, and (bottom) RANDOMNULLS distribution.

Binary: Binary induced operations are similar, but they are
applied on two array operands (or an array/scalar combina-
tion). For example, A+B sums all corresponding elements of
A and B, while A/2 divides each value of A by 2. Besides
applying on the operands data, in this case it is necessary
to also do a set union on their null masks. Any null cell
value in one of the arguments leads to a null value in the
result array. The Roaring datastructures provide API for fast
calculation of union, while for BOOLARRAY and BITVECTOR
we implemented it manually.

Aggregate: An important class of operations summarize
the values of an array into a single scalar value, e.g. a
sum, average, minimum/maximum, etc. Null statuses must be
considered while computing the result, because generally the
null values have to be ignored. Fast querying of the null status
at an individual position is particularly important in this case.

Subset: Datacubes are Big Data in volume, and support
for selecting rectangular subsets (or cutouts) out of the whole
dataset is essential. Subsetting generally requires multiple copy
operations of some length, depending on how the array is
linearized in memory. In the benchmark we approximate it
to 1-D by copying the null statuses at positions in the interval
[size/4, size · 3/4] into the result. This is representative of
what is performed many times over for higher-dimensional
data. For BOOLARRAY it can be implemented efficiently with
copying memory directly, while the other cases require less
efficient probing for the null status of each value.

Extend: Growing an array requires filling the extended
empty parts with null values. The benchmark tests how ef-
ficient it is to initialize a nullmask to all nulls within the
specified spatial domain.

Scale: Data fusion often requires matching arrays with
different grid resolutions, and here a scale, also known as
resample, is an essential operation needed to bring two or more
inputs into a common resolution. We measure downscaling
by a factor of 1.5x with nearest-neighbor interpolation. The

implementation iterates through each coordinate c in the scaled
spatial domain of the result, and copies the null status from
coordinate ⌈c · (1/factor)⌉ in the input array.

Clip: Selecting a subset defined by a more complex geom-
etry, such as a polygon, is a common array operation. Areas
outside of the clipped region are set to null, while those inside
are copied to the result. In the benchmark we approximate this
behavior by doing a similar operation to Subset, except that
positions in the intervals [0, size · 1/4) and (3/4, size) are
additionally set to null.

Mosaic: This is usually an internal operation not exposed
to users. Array processing is applied on tiles (also known as
chunks) of the array, which facilitates concurrent processing
and lower memory overhead. At some points in the processing
pipeline (known as blocking operations) the tiles have to
be merged into a larger tile / array. We implement this by
concatenating two input null masks.

C. Data

All benchmarked null operations are implemented specifi-
cally for 1-dimensional array data. Insights from the results
are fundamentally valid to higher-dimensional data as well,
and implementations remain straightforward.

Selecting representative real-life data is difficult and would
inevitably lead to some biases, therefore we generate syntetic
data in the benchmark. Randomly generated null distribution,
depending on the sparsity, does not result in very realistic
data aside of nulls due to spurious sensor error for example.
Such random errors are very rare, so the benchmark still
supports nulls randomly generated with the standard C++
std::discrete_distribution method, which could
be used for very low sparsity tests.

In cases of higher sparsity, usually real data has connected
areas of null values, e.g. areas over the Atlantic Ocean on
a dataset with temperatures over land (see Figure 1). Here
the generated distribution of nulls is relevant especially for

Authorized licensed use limited to: Constructor University Bremen gGmbH. Downloaded on March 23,2025 at 16:43:11 UTC from IEEE Xplore.  Restrictions apply. 



251

Import Export Serialize Deserialize Unary Binary Aggregate Subset Extend Scale Clip Mosaic
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Fig. 2: Comparison of the null encoding schemes across each operation at a fixed mask size of 106 and sparsity of 25%. The
y axis is logarithmic and shows the runtime in milliseconds.

benchmarks on compressed encodings, as purely random data
is hardly compressible. For this reason we devised a flexible
method for generating distributions that primarily consist of
connected null areas (Algorithm 1).

Algorithm 1 RANDOMRUNS

mask[0 : SIZE − 1]← 0 ▷ Initialize mask
H ←

√
SIZE ▷ Image height

TN ← SIZE · SPARSITY ▷ Total number of nulls
TV ← SIZE − TN ▷ Total valid values
TR←

∑H
i=0 rand(0, 5) ▷ Total number of runs

AN ← TN/TR ▷ Average number of nulls per run
AV ← TV/TR ▷ Average number of valid values
i← 0
while i ≤ SIZE do

rs← rand(1, AN · 2) ▷ Null run size
rs← min(rs, SIZE − i) ▷ Clip to bounds
if rs > 0 then

mask[ri : ri+ rs− 1]← 1 ▷ Set nulls in mask
i+ = rs

end if
vs← rand(1, AV · 2) ▷ Non-null run size
vs← min(vs, SIZE − i) ▷ Clip to bounds
i+ = rs

end while

We consider the real data to be 2-dimensional in square
format with height H . The algorithm generates between 0 and
5 runs of null values per each row; the 5 is configurable in the
benchmark. Each run of null values has a size between 1 and
AN · 2, where AN is the average number of nulls per run as
determined by a data sparsity parameter, and is followed by a
run of valid values with size between 1 and AV ·2, where AV
is the average number of valid values per run. This technique
results in distributions that are much closer to those of real-life
data examples (Figure 1) with respect to compressibility. This

is clearly observable through the file sizes of the DEFLATE-
compressed PNG files (Table I).

Example Original RANDOMRUNS RANDOMNULLS
ERA5 (Fig. 1a) 402 484 992
Sentinel-2 (Fig. 1b) 499 440 870
Sentinel-1 (Fig. 1c) 295 448 959

TABLE I: PNG file sizes (in bytes) of null distributions.

IV. RESULTS & DISCUSSION

The benchmark is implemented in C++ as a collection of
micro-benchmarks with the Google Benchmark framework,
and compiled with GCC 11.4.0 with compiler flags -O3
-mavx2 -mfma. It was executed on a machine running
Ubuntu 22.04 OS with 2x Intel Xeon E5-2609v3 CPUs (2x6
cores @ 1.90GHz, 16MB L3 cache, 256kB L2, 32kB L1),
64GB DDR4 2133MHz RAM, and an SSD hard disk with
read spead of 520 MB/sec. The CPU scaling governor was set
to performance. Benchmark processes were isolated from
other processes on the system with cset shield.

A. Defaults Benchmark

Figure 2 shows runtime per null mask operation at default
fixed parameters. Sparsity is fixed at 25% as we want to give
more weight to dense array applications in this benchmark; the
full range of sparsities is benchmarked in Section IV-B. Array
size is fixed to 106 values, as in our experience array tiles are
most commonly 4-5 MB in practice, which, depending on the
cell size, hold roughly 1 million cells.

BITVECTOR is pretty uniformly worse than ROARINGU;
an exception is Extend which initializes a mask with all null
values. ROARINGU exhibits a well balanced performance,
and we believe that it may have potential to support better
optimized implementations for the Subset and Clip, as the
storage is contiguous like BOOLARRAY. ROARINGC appears
particularly suitable for Serialize / Deserialize cases as well as

Authorized licensed use limited to: Constructor University Bremen gGmbH. Downloaded on March 23,2025 at 16:43:11 UTC from IEEE Xplore.  Restrictions apply. 



252

0.1

1

0.2
0.3
0.5

2
3
5

Import

BoolArray
BitVector
RoaringU
RoaringC

0.001

0.01

0.1

0.0005

0.002
0.003
0.005

0.02
0.03
0.05

Unary

0.001

0.01

0.002
0.003
0.005

0.02
0.03
0.05

Extend

1

10

0.2
0.3
0.5

2
3
5

20
Export

0.1

1

0.02
0.03
0.05

0.2
0.3
0.5

2
3
5

Binary

10

5

20

Scale

4

5

6

7
8

Serialize

1

2

3

5

Aggregate

0.1

1

0.2
0.3
0.5

2
3
5

Clip

1 10 20 30 40 50 60 70 80 90 99

0.01

0.1

1

0.003
0.005

0.020.03
0.05

0.20.3
0.5

23
5

Deserialize

1 10 20 30 40 50 60 70 80 90 99

0.1

1

0.05

0.2
0.3
0.5

2
3
5

Subset

1 10 20 30 40 50 60 70 80 90 99

0.1

1

0.05

0.2
0.3
0.5

2
3
5

Mosaic

Fig. 3: Comparison of the null encoding schemes across each operation at 1-4% sparsity, then 5 to 95 in steps of 5, and finally
96-99%. Mask size is fixed to 106; the y axis is logarithmic and shows serial operation runtime in milliseconds.

when we just need to copy the mask like in a Unary operation.
This is not surprising as it has compact compressed encoding
that makes it an order of magnitude smaller in size than bit-
packed BITVECTOR and ROARINGU (Section IV-C).

B. Specific Benchmarks

Varying Sparsity: The null sparsity makes a difference in
how some datastructures behave with respect to performance.
The benchmark results are shown on Figure 3. BOOLARRAY
and BITVECTOR are not affected much by the data sparsity.
ROARINGU is also mostly unaffected, with slight performance
degradation at higher sparsities in the Subset, Scale, and Clip
operations. It has an interesting performance curve for Import
that initializes the CRoaring bitset from a boolean array, likely
due to CPU branch prediction specifics. ROARINGC exhibits
two types of behavior. When its performance is independent
of the sparsity it tends to be the fastest performing on a given
operation; these operations either do not involve probing for
null status of individual elements, or are well optimized such
as a union in Binary operations. In other cases, performance

drops fast as the sparsity level increases, often by an order of
magnitude between 1 and 10% sparsity.

Varying Size: Figure 4 shows how different null mask sizes
affect the runtime of operations. ROARINGC scales well in the
same cases where it had an edge in the previous benchmark.
Due to the effective compression its real size grows at a slower
rate (around 3.5x by empirical measurement) than the number
of values (10x). The other datastructures behave more linearly
with respect to the number of values. Between 107 and 108 we
observe a drop in performance for BOOLARRAY, and similarly
between 108 and 109 for BITVECTOR and ROARINGU. These
correspond to the same physical size between 10 and 100 MB,
as bitsets use almost 10x less space than BOOLARRAY. This
performance drop is likely related to the size of CPU caches.
For Serialize we observe that 106 tends to be the sweet spot,
which confirms why it is a popular tile size for storage in array
databases; 105 might be a little better, but it results in more
tiles with negative effects on index performance.

Concurrency: Most array operations tend to be embarass-
ingly parallelizable by processing multiple array tiles con-
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Fig. 4: Comparison of the null encoding schemes as the null mask size increases from 103 to 109 elements at a fixed sparsity
of 25%. Both the x and y axes are logarithmic; the y axis shows serial operation runtime in milliseconds.

currently, so it is important to measure performance with a
varying number of threads. The results from our benchmark
of increasing concurrencty from 1 to 10 threads show that all
methods scale similarly well as more cores are used.

C. Memory Usage
Reducing memory pressure during processing can have

large effects on the overal runtime, as it allows more of the
datasets to fit in fast main memory and CPU caches. For
a null mask of N, the memory usage of BOOLARRAY is
fixed to N bytes, and of BITVECTOR and ROARINGU to
N/8 bytes. Determining the memory usage of ROARINGC
is more complex as it is difficult to express with a simple
formula. We implemented a benchmark that creates a Roaring
bitmap (RANDOMNULLS or RANDOMRUNS) of size 106

at a configurable sparsity, and measured the memory usage
empirically with the Valgrind Massif tool. The results showed
that ROARINGC has a relatively constant memory usage of
around 9-10 kB on RANDOMRUNS regardless of sparsity,
which is an order of magnitude lower than uncompressed
BITVECTOR/ ROARINGU. On RANDOMNULLS it was no

better than uncompressed bitset, except at extreme 1-5% and
98-99% sparsities.

V. CONCLUSION

Proper null value handling in array services and tools is
highly important in unsupervised Big Data Analytics, from
both a correctness and a performance perspective. It will
become even more critical once pretrained neural networks
are going to operate autonomously on datacubes. This is
being investigated, for example, in the AI-Cube [47] and
FAIRiCUBE [48] projects. A commercial example is the IBM
/ NASA collaboration to create an open foundational AI model
for geospatial datacubes [49].

Our contribution is the first rigorous benchmark of the most
promissing techniques available for representing null values in
datacubes. The authors have not been involved in the develop-
ment of these methods. However, they have deep experience
in array database architecting, which has helped crafting this
benchmark in a practically relevant way. The authors hope that
this research contributes to advancing the state of the art in
the field of datacube research and development. To that end,
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the complete benchmark code is publicly available, thereby
allowing to reproduce the results presented in this paper, or
extend to further techniques and operations [9].
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