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Summary
While the database collection types set, list, and record have received in-depth atten-
tion, the fourth type, array, is still far from being integrated into database modeling.
Due to this lack of attention there is only insufficient array support by today’s database
technology. This is surprising given that large, multi-dimensional arrays have manifold
practical applications in earth sciences (such as remote sensing and climate modeling),
life sciences (such as microarray data and human brain imagery), and many more ar-
eas. Consequently, flexible retrieval today is supported on metadata, but not on the
observation and simulation data themselves.

To overcome this, large, multi-dimensional arrays as first-class database citizens
have been studied by various groups worldwide. Several formalisms and languages
tailored for use in array databases have been proposed and more or less completely
implemented, sometimes even in operational use.

In the attempt towards a consolidation of the field we compare four important array
models, AQL, AML, ARRAY ALGEBRA, and RAM. As it turns out, ARRAY ALGE-
BRA is capable of expressing all other models, and additionally offers functionality not
present in the other models. We show this by mapping all approaches to ARRAY AL-
GEBRA. This establishes a common representation suitable for comparison and allows
us discussing the commonalities and differences found. Finally, we show feasibility of
conceptual array models for describing optimization and architecture.
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1 Introduction
In 1993, Maier and Vance [30] observed that database technology was rarely used in
scientific applications. In their opinion this is due to the lack of support for ordered data
structures in database management systems. They showed why it is necessary to give
direct support for ordered data structures and presented their ideas on what issues need
to be considered when querying ordered data structures, in particular array data.

Applications of the array abstraction are manifold. Generally speaking, arrays oc-
cur as sensor, image, and statistics data. In the earth sciences, we find 1-D sensor time
series, 2-D satellite imagery, 3-D image time series, and 4-D ocean and atmospheric
data. In the life sciences, human brain CAT scan analysis operates on 3-D/4-D imagery,
likewise gene expression analysis. Astrophysics, aerodynamic engineering, and high-
energy physics comprise further application domains. Not always are array dimensions
of spatio-temporal nature; an example for a non-spatiotemporal dimension semantics
occur is pressure in atmospheric data sets. To the best of our knowledge, no rigid re-
quirements analysis is available currently, only high-level studies like [30] and isolated
investigations. For example, the Discrete Fourier Transform (DFT) has been analysed
from a database viewpoint [37] and a classification of geographic raster operations from
an array query perspective has been published in [18].

Some representative use cases may illustrate application of array databases.

• Browsing map data generated, e.g., from satellite imagery, today mainly is done
through bespoke implementations like GoogleMaps. However, rendering images
for display is but one application. Often, ad-hoc analysis functionality is required,
e.g., for decision support in environmental monitoring and disaster mitigation.
For example, the Normalized Difference Vegetation Index (NDVI) can be derived
from a hyperspectral satellite image by combining the red and near-infrared (nir)
bands in a pixelwise manner according to the formula

NDV I = (red−nir)/(red +nir)

From a data management perspective, non-redundant storage is an advantage,
accomplished through the ad-hoc query flexibility.

• In human brain imaging, PET or fMRI imagery of the human brain activity is
obtained as a 3-D voxel intensity map. A warping operation transforms each brain
image into a canonical shape so that brain organs can be addressed by regions as
defined, e.g., in the Talairach brain atlas. On a database containing potentially
large numbers of such brain scans a question of interest can be ”which scans
contain a critical activation in the Hippocampus area with a confidence of 95%;
show a parasagittal view, encoded in PNG”. The advantage of answering this via a
database query is the flexibility to vary queries and the efficiency in handling large
numbers of data sets. Further, information integration is valuable when tracing
back the scans found to the experiment metadata, such as ”what was minimum
and maximum age of the subjects whose scans have been found?”.
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• In astrophysics, cosmological simulations deliver large-scale 3-D/4-D spatio-temporal
data sets. Cutouts, zooms, and statistical analysis is among the operations re-
quired, such as ”In a (x,y,z, t) datacube, orthogonal spatial slices at location
(x0,y0,z0) for time t0” and ”the ratio of temperatures from the last five time slices
generated, in logarithmic scale”. Here, the capability of a DBMS to flexibly
and efficiently access petabyte-sized objects which are many orders of magnitude
larger than virtual main memory is advantageous. Further, concurrent access by
scientists already while the simulated data cube is under generation is valuable.

As our practical experience in earth, astro, and life science projects reveals, the same
key advantages of databases apply to scientific raster data that have proven substantial to
traditional database application domains: information integration, the superior quality
of service provided by a flexible query language as compared to ad-hoc programming,
optimizability, scalability to efficiently handle massive data volumes, and multi-user
support, to name but a few. This is underlined by the fact that rasdaman, the imple-
mentation of ARRAY ALGEBRA, is marketed commercially and in international use as
geo raster server since more than five years. Likewise, large vendors like ESRI (with
its ArcSDE) and Oracle (with its GeoRaster cartridge) have products supporting array
management in databases to some extent. Oracle’s Director Spatial, Xavier Lopez, has
termed multi-dimensional raster support a ”next great wave in geo databases”.

In the end, today we are not so much further than at the time of the above cited
statement by Maier and Vance: Still, adoption of database technology in scientific array
data management is marginal, despite the potential advantages.

In this contribution we address array support in databases from a conceptual per-
spective. Hence, we next undertake a concise definition of the array data structure.

1.1 The Array Abstraction
The term array is seen here in a programming language sense and synonymously to
raster data, regularly gridded data, and Multi-Dimensional Discrete Data (MDD) [13].
Modulo nomenclature, all models investigated share this concept of arrays, although
different additional assumptions about D and V are made.

Following and extending the definitions by Trenchard More [23], a pioneer in the
study of array theory, we view an array A as a function a : D→V from an index domain
D to a value domain V . An index domain (or short: domain) I is the cartesian product
of at most countably many ordered index sets I0, I1, . . .. Each index i j in an index vector
i ∈ I is an element of the corresponding index set I j. In general we only consider finite
arrays, thus I = I0, . . . , Ik−1, where k is called the valence of the array. Each index set
corresponds to a dimension, thus the term valence in More’s terminology is equivalent
to the number of dimensions (or dimensionality) of an array. We call the cardinality of
an index set I j the length l( j) of the array in dimension j.

The result of applying an index vector i to an array A yields an element A(i) ∈ V
where V is the value domain, to which we sometimes refer to as the array’s range set.
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The locations within an array identified by some admissible index position are called
array cells. Obviously, V determines the possible values cells can take on.

While this (or a similar) structural description of arrays is quite common, there are
quite some differences in the operation primitives as will be shown later.

From the above motivation it follows that array models are partial models and, as
such, need to be embedded into some overarching model (such as the relational one).
AQL comes fully fledged with array and (nested) relational model while AML, ARRAY

ALGEBRA, and RAM focus on arrays exclusively for reasons of conceptual orthogo-
nality and implementation modularity.

1.2 Technology Differentiation
Array databases differ from the traditional notion of multimedia and image database in
that they operate on the semantic level of arrays. In multimedia and image databases,
image and video data are analyzed to extract feature vectors which are stored in the
database and used for retrieval susbequently; the image material itself is not involved
in the query evaluation process. Array databases, conversely, offer a conceptual model
for querying directly on the arrays. Therefore, array databases operate on massively
larger data volumes, often Terabyte-size objects and soon Petabyte objects. Further,
array query results are not of probabilistic nature, but deterministic.

On the other hand, the goal of array databases is not to compete with image pro-
cessing systems. Array query languages tentatively are of less expressive power than
image processing frameworks like [41], mainly to obtain safe models. However, ar-
ray databases are designed to scale several orders of magnitude beyond the image sizes
normally used by image processing, where they usually are constrained to main mem-
ory sizes. This situation is similar to floating-point arithmetic support in SQL: While
queries like selectr ∗ r ∗3.14 f romCircles are well possible and convenient in many ap-
plications, nobody would use an RDBMS for number crunching. That said, it makes
sense to couple image processing systems with array databases; a natural task distribu-
tion is to first subset or condense data with a query, say, from a Terabyte to a Gigabyte,
and then process the result further in an image processor acting as the database client.

1.3 Comparison Overview
We consider three algebrae (AML, ARRAY ALGEBRA,
RAM) and one calculus (AQL). Approaches can roughly be classified into extended
relational models which additionally support array data (AQL, RAM) and dedicated
array query engines designed for getting embedded into an (R)DBMS (ARRAY ALGE-
BRA, AML).

• AML [31] is a general-purpose array query language. Although motivated by geo
imagery scenarios it can be applied to a wide variety of application domains. A
distinguishing feature of AML is the notion of bit patterns, together with pattern-
oriented application function.
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• AQL [27] embeds array support into a specific nested relational calculus using
a comprehension syntax variant. The array part consists of four very low-level
array primitives plus a composed high-level operator for array generation. Work
on AQL puts particular emphasis on the complexity analysis of index access.
Optimization is discussed at the calculus level.

• ARRAY ALGEBRA [2, 5] offers an algebraic array model which relies on three
orthogonal primitives over which a set of convenience functions is provided. Set
semantics is supported to the degree necessary for coupling ARRAY ALGEBRA to
some embedding (object-oriented or relational) data model. ARRAY ALGEBRA

is implemented in the rasdaman array DBMS which is commercialized and in
operational use since many years. In rasdaman, ARRAY ALGEBRA defines not
only query language semantics, but also storage mapping as well as logical and
physical optimization.

• RAM [45, 1] is designed as an extension to a specific relational DBMS, Mon-
etDB [9]. As opposed to AQL, however, relational and array model are strictly
separated.

There are some more data models in the field, which we have not considered in
our comparison as they are not as immediately relevant as the candidates chosen. The
AQuery system, which is targeted at financial stock analysis, uses the concept of arrables
– i.e., ordered relational tables – and SQL queries extended with an ASSUMING OR-
DER clause [25]. AQuery only supports one-dimensional arrays.

Maier and Howe pursue an ADT/blob based approach where an algebra for the
manipulation of irregular topological structures is applied to the natural science domain
[19]. As such, it transcends the scope of our analysis.

Cerveiro Cordero at al [8] propose a model which is rather similar to ARRAY ALGE-
BRA without sorting. They give, however, an interesting new implementation strategy
based on automata. In [16] and [33], modeling of arrays and sequences in Datalog is
investigated. SciDB [11] is a system under development which is announced to offer
array support; an interesting twist is that ragged arrays are said to become possible. Yet,
a formal array model has not been published to the best of our knowledge.

SRAM [9], developed by the originators of RAM, is specialized towards sparse
arrays, hence falls into the category of OLAP models which is not the focus of this con-
tribution. Other domain-specific approaches come from the geographic (in particular:
remote sensing) field; they include MapScript [39] and a 3-D spatio-temporal extension
[22] of Tomlin’s map algebra [44]. While there are interesting features and results, we
focus on general-purpose, domain-independent models in this contribution.

As it turns out, the underlying methods of formalization differ in both flavor and
rigor. We introduce each approach by describing its array model and the core operators.
To achieve a formally rigorous comparison, we additionally map all array models in
ARRAY ALGEBRA. This allows to assess relative expressiveness and other properties.
As in this paper emphasis is on the conceptual modeling, implementation issues are
touched only to the extent necessary for assessing conceptual decisions.
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The remainder of this contribution is structured as follows. The next section ana-
lyzes each of the models selected. Section 3 gives a synoptic comparison based on the
common model of ARRAY ALGEBRA. Implementation details are addressed in Section
4. Section 5 presents conclusion and outlook.

2 Overview of array models
In this Section, the four array models under consideration are presented. To ease fea-
ture comparison, AQL, AML, and RAM are mapped to ARRAY ALGEBRA, which we
introduce first.

2.1 Array Algebra
ARRAY ALGEBRA [2, 5] adopts an algebraic approach to array modeling. It has been
developed after studying image processing and computer graphics such as [21, 12, 20];
AFATL Image Algebra [41] has proven a particularly valuable basis for eliciting the
needs of domain-independent array processing. The targeted application domains of
ARRAY ALGEBRA encompass sensor, image, and statistics data services; current em-
phasis is on large-scale Earth Science [18] and Life Science [42] data.

The rasdaman array DBMS with its query language, rasql, implements ARRAY

ALGEBRA [36]. This system is in operational use since many years, among others as the
geo raster server of the French National Geographic Institut where an airborne image
map of a dozen TB size is maintained. In 2008, a geo raster service standard based
on ARRAY ALGEBRA concepts has been issued by the Open GeoSpatial Consortium
(OGC) [3]. The open-source code of rasdaman is available from www.rasdaman.org.

We first give preparatory definitions for the notion of multi-dimensional intervals,
and then introduce the core algebra.

2.1.1 Interval Arithmetics

We assume the usual vector notation and operations, in particular addition and scalar
multiplication. In ARRAY ALGEBRA, a domain X ⊆ Zd of dimension d > 0 is spanned
by two vectors~l and~h of dimension d as follows:

X := {p = (p1, . . . , pd)⊆ Zd|∀1≤ i≤ d : li ≤ pi ≤ hi}

which we abbreviate as
X = [l1 : h1, . . . , ld : hd]

X is also referred to as m-interval (for multi-dimensional interval). Intuitively,~l and~h
can be considered to be the lower and upper diagonal corner points of an axis-parallel
hypercube in Zd . The set of all domains is denoted as D.

On such domains, ARRAY ALGEBRA defines some probing functions. Let domain
X = [l1 : h1, . . . , ld : hd] be given for some d > 0. Then,
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• dim : D→ N,dim(X) = d
is called dimension of X .

• ~lo : D→ Z,~lo(X) = (l1, . . . , ld)
denotes the low bound corner of X ; we will use ~loi(X) to denote the ith component
of this vector.

• ~hi : D→ Z,~hi(X) = (h1, . . . ,hd)
denotes the high bound corner of X ; again, we will use ~hii(X) to denote the ith
component of this vector.

• card : D→ N,card(X) = ∏
d
i=1(hii(X)− loi(X)+1)

is called extent of X ; we sometimes use the alternative notation |X |.

Sub-array extraction is done through subsetting, which we further subdivide into
trimming and slicing. Trimming extracts some subinterval from an m-interval, preserv-
ing its dimension. Its formal definition runs as follows. Let X be an m-interval of
dimension d > 0, spanned by d-dimensional vectors ~l and~h. For some integer i with
1≤ i≤ d and a one-dimensional interval I = [m : n] with li ≤ m≤ n≤ hi, the trim of X
to I in dimension i is defined as

trim(X , i, I) := [l1 : h1, . . . ,m : n, . . . , ld : hd]
= {~x ∈ X : m≤ xi ≤ n}

Intuitively speaking, trimming eliminates those parts of an array which are lower
than m and higher than n in the dimension indicated; the overall dimensionality is un-
changed.

As opposed to this, a slicing operation cuts out a hyperplane, thereby reducing array
dimensionality by 1. Formally, for some m-interval X as above, an integer i with 1 ≤
i≤ d and an integer s with loi(X)≤ s≤ hii(X), the slice of X at position s in dimension
i is given by

slice(X , i,s) := [ lo1(X) : hi1(X),
. . . ,

loi−1(X) : hii−1(X),
loi+1(X) : hii+1(X),
. . . ,

lod(X) : hid(X)
]

= { ~x ∈ Zd−1|
~x = (x1, . . . ,xi−1,xi+1, . . . ,xd),
(x1, . . . ,xi−1,s,xi+1, . . . ,xd) ∈ X

}
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Lemma: Trimming is commutative as long as both trim operations affect different
domain dimensions.

Proof. Let domain X = (l1 : h1, ..., ld : hd) of dimensionality d > 1 be given, together
with two domain dimensions i and j with 0 < i, ji ≤ d and i 6= j. Further, assume
intervals I = [lI : hI] and J = [lJ : hJ] with loi(X)≤ lI ≤ hI ≤ hii(X) and lo j(X)≤ lJ ≤
hJ ≤ hi j(X). Then,

trim(trim(X , i, I), j,J)
=trim(trim([l1 : h1, . . . , ld : hd], i, I), j,J)
=trim([l1 : h1, . . . , lI : hI, . . . , ld : hd], j,J)
=[l1 : h1, . . . , lI : hI, . . . , lJ : hJ, . . . , ld : hd], j,J)

(without restricting generality)
=trim([l1 : h1, . . . , lJ : hJ, . . . , ld : hd], i, I)
=(trim([l1 : h1, . . . , ld : hd], j,J), i, I)
=trim(trim(X , j,J), i, I)

In a similar manner, associativity can easily be proven for the case that all trim
dimensions are different. Obviously, trimming is neither commutative nor associative
as soon as trim dimensions coincide.

Slicing changes dimension numbering and, therefore, is neither commutative nor
associative.

2.1.2 The Core Model

Let X be a finite m-interval and V a non-empty value set with equality predicate . = . :
V ×V → boolean. A V-valued array A over domain X is defined as a total function

A : X →V,A(x) = v for~x ∈ X ,v ∈V

We sometimes abbreviate this as A ∈ V X . The positions x ∈ X are referred to as cells,
their associated values A(x) as cell values.

Totality of this function is motivated by practice. While images often have areas
with undefined cell values, as the examples in Figure 1 demosntrate, it is common
practice to materialize them and assign a designated null value, such as 0 with CAT
scans and 255 (i.e., white) for map backgrounds.

Again we need some probing functions on arrays, some of which are simply lifted
from m-intervals. Let A be a V -valued array over domain X . Then,

• dom : V X → D,dom(A) = X
denotes the domain of A.

• dim : V X → N,dim(A) = dim(dom(X))
is the dimension of A.
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Figure 1: Images with undefined areas: CAT scan (left) and incomplete airborne image
mosaic (right)

To ease distinction in the sequel we use lower-case names for m-interval operations
and upper-case names for array operations.

The array constructor, MARRAY, establishes an array and initializes its cell values
by evaluating some given expression for every cell. Let X be a spatial domain, V a
value set, ID be a non-empty set of identifiers, and ex be an expression with result
type V which may contain free occurrences of an identifier x ∈ ID. Then, array A with
domain X and cell values ex for each x ∈ X is generated by

A = MARRAY (X ,x,ex)

Operations allowed for expression ex can be classified into cell-type and index op-
erations. Cell-type operations result in a value to be assigned to a particular cell. For
example, adding two arrays A and B of same domain dom(A) = dom(B) and cell type
V cell-by-cell makes use of addition + : V ×V →V on the cell type:

MARRAY (dom(A),x,A(x)+B(x))

ARRAY ALGEBRA only requires that, for any value set V and operation op on it, (V,op)
forms an algebra, i.e., V is closed under op.

Index operations are those whose result is used for indexing an array. They always
return integer values. As an example, consider scaling down some 800×600 image A
by a factor of 2 using nearest-neighbor interpolation is expressed as follows, making
use of vector component extraction and integer arithmetics:

MARRAY ([0 : 399,0 : 299],x,A(x0 ∗2,x1 ∗2))

We assume that all usual integer-valued arithmetics be available, including rounding
of, e.g., division results to integer. Obviously, cell-type and index operations can be
combined within a given expression.

The condense operator, COND, reduces an array to a scalar value by combining
the array cell values through some aggregating function. Again, an iterator variable is
bound to a spatial domain to allow addressing of cell values in the condensing expres-
sion.

Let o be a commutative and associative operation over V with signature o : V ×V →
V , x ∈ ID be a free identifier, X = dom(A) = {x1, . . . ,xn|xi ∈ X} an m-interval, and eA,x
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an expression of result type V possibly containing occurrences of array A and identifier
x. Then, the condense of A by o is defined as

COND(o,X ,x,eA,x) := ©x∈X eA,x

= eA,x1 o . . . o eA,xn

Again, we allow any combination of cell-type and indexing operation to occur
within eA,x.

As an example, for color table computation one has to know the set of all values
occurring in the array. The condenser allows to derive this set by performing the union
of all cell values:

COND(∪,dom(A),x,{A[x]})

The next example demonstrates combination of MARRAY and COND to express
matrix multiplication. Let A be an m× n and B be an n× p matrix. As in the query
language, we allow iteration variables to be defined over single axes for syntactic sim-
plicity. Then,

A×B =MARRAY (
[1 : m,1 : p],(i, j),
COND(+, [1 : n],k,A[i,k]∗B[k, j])

)

The final example is taken from image processing. A filter kernel is a quadratic
matrix which iterates over an image to determine a new value by combining each old
value plus its neighborhood. The kernel matrix values represent a weight factor for
each pixel in the neighborhood which is applied before adding up all values. In ARRAY

ALGEBRA, applying kernel K on image A can be expressed as follows:

MARRAY (dom(A),x,
COND(+,dom(K),y,A(x+ y)∗K(y))

)

The third and last core operator is an array sorter, SORT , which proceeds along a
selected dimension to reorder the corresponding hyperslices. It does so by means of
some order-generating expression which allows to rank the slices. The sorted array has
the same dimensionality and extent as the original one.

Let A be a d-dimensional array with domain X and value set V , a with 1≤ a≤ d a
dimension number, i an index position on dimension a somewhere within A, and r an
expression of some type R on which a total ordering < is defined and which may
contain occurrences of A, a, and i. Let further S be an auxiliary array with dim(S) = 1,
dom(S) = [loa(dom(A)) : hia(dom(A))], and values consisting of a permutation of inter-
val [loa(dom(A)) : hia(dom(A))] resulting from sorting {loa(dom(A)), . . . ,hia(dom(A)}
according to the ranking results of expression r on every slice slice(A,a, i).
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Figure 2: Sorting a 3-D array along one dimension according to color values

Then, the array A sorted along dimension a by way of expression s is given by

SORT (A,a,r) =

MARRAY (X ,x,A(x1, . . . ,xa−1,S(xa),xa+1, . . . ,xd))

The example in Figure 2 illustrates the principle; sorting of vertical slices (i.e.,
along axis ”1”) according to each slice’s greyscale intensities can be expressed as
SORT (A,1,r) with a sorting expression that sums up all voxel intensities for compari-
son:

r = COND(+,slice(X ,1, i),s,A(s))

Note the free variable i in r; the SORT operator makes use of it by evaluating r at every
position of dimension a.

We observe that, although sorting is defined in terms of slices along a given axis, the
ordering predicate does not have to constrain itself to just inspecting this slice. Rather,
any general predicate on the array can be phrased, such as evaluating temporal devel-
opment of values by comparing a slice with its neighbor slices along the time axis.

2.1.3 Array Typing

AQL knows typed arrays, whereby a type is characterized by the array’s cell type.
In ARRAY ALGEBRA, cell type and extent are recorded in a type definition, whereby
types can fix only the cell type, or additionally array dimension, or additionally the array
extent. Following [40], for some index domain X and cell type V , the corresponding
completely defined array type T is denoted as

T = [[X ,V ]]

In practice, array types are used to define collections grouping sufficiently simi-
lar arrays. For example, an XGA greyscale image collection would allow storing 2-D
images with extent 1024× 768 over RGB pixels; in the rasdaman type definition lan-
guage, rasdl, which lends itself to the Object Definition Language (ODL) of the ODMG
standard [7] this reads as follows:

typedef marray<

unsigned char, [0:1023,0:767]

> XgaGreyImage;

typedef set< XgaGreyImage > XgaGreyImageTable;
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A drillcore images with a fixed horizontal resolution of 1000 pixels and an unlimited
depth can be defined with the following rasdl statement:

typedef marray<

struct{ unsigned char red, green, blue; },

[0:999,0:*]

> DrillCoreImage;

A Landsat remote sensing image mosaic (i.e., a map composed of many individual
images) might contain 2-D arrays with no extent limits and a cell type consisting of five
8-bit unsigned integers. This is the corresponding rasdl code:

typedef marray<

struct{ unsigned char b1, b2, b3,

b4, b5; },

[*:*,*:*]

> LandsatMosaic;

Hence, the ARRAY ALGEBRA typing concept maps directly to data definition as
known from relational DDL. During semantic query analysis, this information is ex-
ploited for both type checking and optimization purposes.

2.1.4 Derived Operators

As a syntactic convenience we extend the bracket notation on m-intervals so as to allow
trimming and slicing of arrays. An index operation on a d-dimensional array consists
of a bracketed list of d items where each item applies to its dimension sequentially. A
pair l : h at position i performs a trim operation in dimension i, while a single item s
performs a slicing. For example, expression

A[x0 : x1,y,z]

represents a 1-D array with domain [x0 : x1] obtained by trimming A in its first dimension
and slicing it in its second and third dimension. Such a combination of trim and slice
operations can be rewritten in a natural way using MARRAY together with suitable
array addressing arithmetics.

In the extreme case, all d dimensions consist of slice indicators. Strictly going with
the definition this returns a 0-D array containing one value. We define a 0-D array to
be equivalent with a scalar value and achieve a homogeneous embedding of the well-
known array element accessor .[.] : V X ×Zd →V into our model.

Frequently, imaging operations require combination of two images in a pixel-by-
pixel fashion. Following AFATL Image Algebra [41] we call such functions on arrays
induced operations because the cell type operation naturally induces a corresponding
function on arrays.
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Let T , U , and V be value sets and f : T →V and g : T ×U→V be unary and binary
functions between the value sets. Further, let arrays A ∈ T X and B ∈UX be given for
some m-interval X . Then, the induced array operations f and g are defined as

f : T X →V X , f (A) = MARRAY (X ,x, f (A[x]))

and
g : T X ×UX →V X ,g(A,B) = MARRAY (X ,x,g(A[x],B[x]))

Note that ARRAY ALGEBRA does not require any specific cell type function to
be induceable. Rather, it defines a generic mechanism which an implementation may
or may not offer on particular functions. For example, if a concrete embedding data
model on hand supports structured cell types (”structs” in C++ and Java) then record
component extraction as well as record composition can be expected to be available for
induction, allowing operations like channel extraction and recombination.

Induced operations hide cell inspection sequence from the user; this is not just con-
venient but, moreover, gives rise to efficient implementation strategies [47]; we will
address this in Section 4.

Condenser shorthands perform aggregation without explicit cell addressing; hence,
they bear resemblance to the relational aggregates. For example, to add up all values in
array A over some domain X ⊆ dom(A) a convenience function add() can be defined
by

add cells(A) = COND(+,X ,x,A[x])

By way of variation, maximum and minimum of the array values can be determined
by

max cells(A) = COND(max,X ,x,A[x])
min cells(A) = COND(min,X ,x,A[x])

On boolean arrays we can define quantifiers1 by using the boolean connectors ∧ and
∨ to consolidate the values:

all cells(A) = COND(∧,X ,x,A[x])
some cells(A) = COND(∨,X ,x,A[x])

Again, suppressing the iteration variable aids greatly in optimizing.
As a final example we formulate histogram computation. Given array A with a value

set V = {v1, . . . ,vn} we can create an n-bucket histogram via

MARRAY ([1 : n],h,add cells(A = h))

The comparison represents a unary induced function where each A value is compared
against the current h. The outcome is a boolean array whose true values are interpreted
as 1, f alse as zero, thereby allowing to add up the number of matches.

1For relational (that is: set oriented) aggregates the case of an empty set needs to be considered in the
definition. Here this is not necessary because by definition an array domain never is empty.
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2.2 AML
AML, short for Array Manipulation Language, is an algebra-based, high-level language
designed to allow querying array data and defining new arrays in terms of existing ones
[31, 32]. The model is aiming towards applications in image databases, particularly for
remote sensing, but it is described as customizable such that it can serve a wide variety
of application domains.

2.2.1 Model

AML uses vector notation ~x to denote an infinite vector of integers and ~x[i] to denote
its ith element. In AML’s terminology an array A is described by a shape ~A, a domain
DA and a mapping MA. ~A[i] determines the extent of array ~A in dimension i. More
precisely, we have that vector ~x ∈ A iff 0 ≤~x[i] < ~A[i] for all i ≥ 0. In passing we note
that AML arrays always have a lower bound of 0. The domain2 DA is the set of possible
values which array A can hold. The mapping MA : A→ DA returns, for every ~x ∈ A,
exactly one value v ∈DA and returns NULL if~x /∈ A, where NULL /∈DA is a null value.

The dimensionality of array A, written dim(A), is the smallest i such that ~A[ j] = 1
for all j ≥ i. If there is no such i, then dim(A) is undefined. Arrays of undefined
dimensionality are not dealt with in [31, 32], so in the course of this comparison we
presume that any array A has a finite dimensionality.

Relating this definition of arrays to the terminology presented in 2.1 we observe that
an array’s domain corresponds to its shape ~A, an array’s value set to the domain DA, and
the array function itself to MA.

Particular to AML is the notion of bit patterns, which replace indices as a means of
accessing arrays within operations. A bit pattern P is an infinite binary vector which
can be represented in some finite form, i.e. consists of infinite repetitions of some finite
vector, such as P = (1,0) which is equivalent to P = (1,0,1,0, . . .). Along with bit
patterns, two pattern functions are introduced: count and index. Function count(P,k)
determines the number of zeros in a bit pattern P up to position k while index(P,k)
returns the position of the k-th 1 in P.

Bit patterns are used differently in the AML operators, thus their meaning will be
discussed separately for each operator. All of them take at least one array as input and
return one array as output. The following definitions give an intuition of the operators;
detailed formal inspection follows in the next section and in [31].

The three core operators of AML are subsample, merge, and apply. The subsample
operator is used to eliminate cells in an array. Given some array A, a bit pattern P, and
a dimension number i,

SUBi(A,P)

represents that array B which is obtained by slicing array A along dimension i. Bit
pattern P determines which slices are kept in the new array B: a value of 1 preserves the

2Note that the AML term ”domain” corresponds to ”value set” in ARRAY ALGEBRA, not ARRAY
ALGEBRA’s domain.
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slice at the corresponding position, a value of 0 suppresses its inclusion in the result.
For instance, if P = 01 then every second slice is kept, if P = 001 then every third slice
is kept, etc.

The merge operator combines two arrays. Given two arrays A over domain X and B
over domain Y , a dimension number d, a bit pattern P and a default value δ i, the merge
operation intertwines the arrays along the given dimension according the given pattern
filling up holes with the default value. This is written as

MERGEd(A,B,P,δ )

The apply operator serves to apply a given function to an array. While this is similar
to ARRAY ALGEBRA’s induced functions, an apply operation does not need to work
on the complete array simultaneously, but can be applied to subarrays to perform a
subsetting in addition. The result array, consequently, can have a domain different from
the original array, depending on the function that is applied. The apply operator has the
following arguments: an array A of dimension d, a function f that should be applied,
two vectors ~D f and ~R f that determine the domains of the input and output array of f ,
and bit patterns P0 to Pd−1 that determine the application pattern:

APPLY (A, f , ~D f , ~R f ,P0, . . . ,Pk−1)

Notably, AML does not provide an array-generating construct ”from scratch”, like
ARRAY ALGEBRA does – new arrays can only be derived from existing ones.

2.2.2 Mapping to Array Algebra

Any AML array A can be mapped to an ARRAY ALGEBRA array B as follows. We
observe that, in general, the spatial domain X is limited to a hypercube in Nd located
at the origin. Therefore, it always holds that lo(X) =~0, and we can set ~A =: hi(X).
Any vector ~x ∈ A corresponds to a cell x ∈ X . The array’s value set is given by V :=
DA∪NULL, although AML does not make any statement about DA. From the above it
follows that dim(B) =: dim(A) and B(x) = A[~x]. Having established this identity, we can
presume, for any array A passed to an AML operator, the existence of a corresponding
array in ARRAY ALGEBRA, which we will refer to by the same name.

Next, we define the mapping for the operators.

Subsample. This operator cuts out slices from a given array A ∈V X , dim(A) = d, ac-
cording to a bit pattern P along some dimension i < d. The ARRAY ALGEBRA domain
of the resulting array B ∈VY can be calculated as follows:

Y := [ 0 : hi1(X),
. . . ,

0 : count(P,hii(X)−1),
. . . ,

0 : hid(X)
]
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Cell values of B are simply copied from the input array A, hence when defining this
operator in ARRAY ALGEBRA we need to map the cells of B to the corresponding cells
of A. We achieve this by defining an appropriate indexing function SP,i : Y → X :

SP,i(


x1
...
xi
...

xd

) :=


x1
...

index(P,xi +1)
...

xd


Then, the subsample operator can be mapped as follows:

SUBi(A,P)
≡

MARRAY (Y,x,A(SP,i(x)))

Merge. This operator intertwines the elements of two arrays A∈V X and B∈VY along
a dimension i according to a bit pattern P, filling up ”holes” with a default value δ ∈V .
Again making use of the pattern functions we can define the ARRAY ALGEBRA domain
of the resulting array C ∈V Z:

Z := [ 0 : max(hi1(X),hi1(Y )),
. . . ,

0 : max(index(P,hii(X)), index(P,hii(Y )))+1,

. . . ,

0 : max(hik(X),hik(Y ))
]

In analogy to the subsample operator, elements of C are copied from arrays A and
B. Again, we define an auxiliary indexing function SA

P,i : Z→ X which relates C cells to
A cells:

SP,i(


x1
...
xi
...

xk

) =


x1
...

count(P,xi +1)
...

xk


SB

P,i : Z → Y can be defined the same way by taking the boolean complement P
instead of P.

As before, in the merging process it may happen that ”holes” appear, i.e. the step
functions yield cells that are neither located in the domain of A nor in that of B. By
definition, such ”holes” are filled with δ values. To model this we define a universal
access function g : V X ×X×V →V which, for a given array A ∈V X and δ ∈V , returns
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A(x) if x ∈ X and δ otherwise. Further, as ARRAY ALGEBRA is acribic, we require a
ternary boolean decision function

(.?. : .) : boolean×V ×V →V

which evaluates to the second value if the first parameter equals true and to the third
parameter otherwise.

Now, the merge function can be mapped as follows:

MERGEi(A,B,P,δ )
≡

MARRAY (Z,x,
( P(x(i)) = 1 ? g(A,SA

P,i(x),δ ) : g(B,SB
P,i(x),δ ) ),

)

Apply. This operator applies a function f : VY →W Z to subarrays of an array A ∈V X

and concatenates the resulting arrays to obtain an array B ∈W O. Let Ax ∈ VY be a
subarray of A at cell x with spatial domain Y – more formally Ax := MARRAY (Y,y,A(x+
y)). Then, f (Ax) ∈W Z .

As before, the ARRAY ALGEBRA domain of the resulting array B can be calculated
by means of the pattern functions:

O := [ 0 : count(P0,hi1(X)−hi1(Y ))∗hi1(Z),
. . . ,

0 : count(Pk−1,hik(X)−hik(Y ))∗hik(Z)
]

Then, the apply operator can be mapped as follows:

APPLY (A, f , ~D f , ~R f ,P0, . . . ,Pk−1)
≡

MARRAY (O,x, f (Ay)(xMODhi(Z)))

where y(i) = (index(P0),x(i)/hi(Z)+1).

2.3 AQL
AQL is based on NRCA, an extension of the nested relational calculus NRC introduced
in [27, 29]. Its authors position AQL such as to support the application domains of the
NetCDF data exchange format3, in particular: scientific array data.

3see www.unidata.ucar.edu/software/netcdf
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2.3.1 Model

The NRC calculus is equipped with complex objects, including products and sets. The
value set comprises all complex types mentioned earlier, but can additionally be ex-
tended by means of an uninterpreted base type, i.e., a ”black box” with implementation
dependent semantics. NRCA mainly adds natural numbers to this model: constants,
basic arithmetics, an index set generator, and a summation construct, which allows for
expressing aggregates. This allows to algorithmically generate and manipulate arrays.

2.3.2 Operations

NRCA introduces four array constructs; tentatively, these primitives have been kept few
and simple so as to obtain an orthogonal query language and to support optimizability.
Two of these constructs operate on arrays. The first is subscripting, denoted by

e1[e2]

where e1 is an array and e2 is an index value; the result is the value contained in the cell
addressed thereby. The second is a construct to obtain the length in a given dimension
d, denoted by

dimd(e)

Two further accomplish array generation. Array tabulation (i.e., generation) is done
by means of index values and function application on such index values, denoted by

[[e|i1 < e1, . . . , id < ed]]

where i1, . . . , id are the index values and e represents the body of a lamba abstraction
λ (i1, . . . , id).e. We observe that AQL assumes the domain to be a hypercube in N0

d .
The last operator, index, converts a set of (index,value) pairs into an array, denoted

by indexd(e), where e denotes the set and d refers to the dimensionality of the array to be
created. In contrast to the array tabulation construct, the index construct does not require
that in e there is exactly one element corresponding to each array’s cell; duplicates are
merged into sets, and cells that do not have any corresponding (index,value) pair get
assigned the empty set. Hence, the index construct creates an array of sets.

Based on this calculus, AQL is defined using a comprehension syntax that allows
for simplified expressions on top of core NRCA.

2.3.3 Mapping To Array Algebra

Any array A in AQL can be mapped to an ARRAY ALGEBRA array B∈V X as defined in
subsection 2.1. In general, an AQL domain X is limited to a hypercube in Nd located at
the origin, so it always holds that~lo(X) =~0. Hence, hiiX = dimi(A) and consequently
B(x) ≡ A[x] for all x ∈ X . Further, dim(B) := dim(A) can be established. With this
identity, we can presume for any array A in AQL the existence of a corresponding array
in ARRAY ALGEBRA, which we will refer to by the same name.
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As for the operations, we skip the auxiliary functions (subsetting and length) and
instead concentrate on tabulation as the core construct. Mapping to ARRAY ALGEBRA

is straightforward:

[[e|i1 < e1, . . . , id < ed]]
≡

MARRAY ([0 : e1−1, . . . ,0 : ed−1],v,e)

The index function is a special case in that it operates on sets of pairs, something not
supported by ARRAY ALGEBRA. However, following ARRAY ALGEBRA’s philosophy
we can assume declarative access operators for data structures provided, in this case: an
associative set accessor

ACC : P(I×V )× I→V

which, for some given set of (index,value) pairs S ∈ P(I×V ) and a given index value
~i = (i1, ..., id) ∈ I retrieves the corresponding value v ∈V such that ACC(S,~i) = v. With
this associative set accessor, the index operation can be phrased as an MARRAY:

indexd(e)
≡

MARRAY ([0 : e1−1, . . . ,0 : ed−1],x,ACC(e,x))

This allows, as a side effect, to convert a relational array representation (as used,
e.g., in ROLAP) to an ARRAY ALGEBRA array.

2.4 RAM
The RAM model is designed as an extension to the neo-relational DBMS [9]. In con-
trast to AQL, the array model is clearly separated from the relational query formalism.
As an intended application area and its motivating example, [45] mentions multimedia
analysis. A case study on the retrieval of relevant shots of video material given a query
image has been reported [46, 10].

2.4.1 Model

An array is defined to be a function A : SA→ τA where SA is the array’s shape and τA
is the array’s element type. An n-dimensional shape S is defined as a vector of n ∈ (N)
axis lengths which uniquely defines a compact hypercube in Nn

0. The element type τA
may either be an atomic type (defined in the database layer) or another array; hence,
RAM supports nesting of arrays. Among the possible atomic element types are char,
int and float. The valence |SA| of an array A is defined as the number of dimensions in
its shape. An index value is a vector i ∈ S.

Only minor adjustments need to be made to relate RAM’s terminology to ARRAY

ALGEBRA: The ARRAY ALGEBRA domain is given by an array’s shape SA, its value
set by the element type τA, and the function itself by A.
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2.4.2 Operations

RAM’s primary operator is a generic array construction operator which reminds of
AQL’s tabulating construct:

A = [ f (i0, . . . , i(n−1))|i0 < S 0
A , . . . , i(n−1) < S

(n−1)
A ]

This specifies an array A which has shape SA and cell values A(i0, . . . , i(n−1)) =
f (i0, . . . , i(n−1)) ∀(i0, . . . , i(n−1)) ∈SA,n = |SA|.

The theoretical basis of RAM is formed by its intermediate algebra which is more
low-level and designed as an intermediate step for the mapping to a relational model.
It consists of six basic operators: const, grid, map, apply, choice and aggregate. These
operators can be combined to express an operator equally expressive as the array com-
prehension above.

The const operator creates a new array of a given shape filled with a constant value

const(S ,c) := [c|i < S ]

The grid operator creates a new array of a given shape filled with values taken from
its index values

grid(S , j) := [i j|i < S ]

where i j is the index vector i component sitting at position j + 1. On a side note,
RAM has the notion of aligned arrays that are defined as arrays with identical shape
representing related data. In these arrays, elements with corresponding index vectors
are related. However, we could not find any modeling consequence of this concept.

The map operator creates a new array of which each element is the result of applying
a given function to aligned elements in a set of arrays, similar to ARRAY ALGEBRA’s
unary induced operations:

map( f ,A1, . . . ,Ak) := [ f (A1(i), . . . ,Ak(i))|i < SA]

where SA = SA1 = . . . = SAk.
The apply operator creates a new array of which each element is the result of apply-

ing a given array to aligned elements in a set of index-arrays.

apply(A, I1, . . . , Ik) := [A(I1(i), . . . , Ik(i))|i < SI]

where
SI = SI1 = . . . = SIk,

k = |SA|,

A(i) = nil ∀ i /∈SA

with nil representing an undefined (null) value.
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The choice operator creates a new array where cell values are chosen from two input
arrays of the same size, depending on the boolean values a third array holds at the cell
location under inspection:

choice(C,A,B) := [i f f (C(i)) thenA(i)elseB(i)|i < SC]

where SA = SB = SC, τA = τB, and τC = boolean.
The aggregate operator applies an aggregation function along the first j axes of an

array.
aggregate(g, j,A) := [g([A(ī)|i0, . . . , i j−1])|i j, . . . , in−1]

Aggregation function g accepts an array as input and delivers a scalar value.

2.4.3 Mapping To Array Algebra

A mapping from a RAM array A to an ARRAY ALGEBRA array B ∈V X can be defined
as follows. The lower bound of the spatial domain is located at the origin, i.e. lo(X) =~0,
hence hi(X) = SA . Furthermore, V = τA and B(x) = A(X).

Mapping the six RAM operators to ARRAY ALGEBRA is straightforward as the
MARRAY operator can be used to express array comprehensions. The const operator is
expressed as an MARRAY with a constant cell expression:

const(S ,c)
≡

MARRAY ([0 : hi1(X), . . . ,0 : hin(X)],x,c)

Expressing grid in ARRAY ALGEBRA is done in a similar manner, but using the
index expression instead of the constant:

grid(S, j)
≡

MARRAY ([0 : S1, . . . ,0 : Sn],v,v j)

Merging a set of aligned arrays A1, . . . ,An into a single array A is expressed in AR-
RAY ALGEBRA in a straightforward manner through an MARRAY operation containing
a cell assignment expression where the Ai hyperslice values are copied condititionally,
depending on which Ai the current coordinate position is touching. The map function
is represented by an MARRAY expression where function f is applied to the cells of
structure

map( f ,A1, . . . ,An)
≡

MARRAY ([0 : S1, . . . ,0 : Sn],v, f (A(v)))

The apply construct maps in a straightforward manner to ARRAY ALGEBRA in-
duced operation:

apply(A, I1, . . . , Ik)
≡

MARRAY (X ,v,A(i(v)))
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Finally, the choice operator in ARRAY ALGEBRA makes use of the carrier set
boolean together with its intrinsic operations, in particular the conditional statement.
The choice operation, then is expressed as

choice(C,A,B)
≡

MARRAY (dom(C),v, (C(v) ? A(v) : B(v)))

3 Comparison
The previous section has shown that, although all four models have a different look
and feel, they share certain common design goals. After the detail comparison, we
now discuss commonalities as well as different choices made. We proceed along the
common core model properties.

3.1 Array Representation
3.1.1 Domain

All array models introduced share the concept of arrays as functions over a domain,
although typing is only supported by ARRAY ALGEBRA. Furthermore, the models
agree upon the choice of a rectangular, axis-parallel hypercube in Zd as the array’s
domain. AML, AQL, and RAM constrain array index space to nonnegative values, i.e.
the hypercube’s lower boundary needs to be located at the origin; ARRAY ALGEBRA

allows negative indices as well.
Notational convenience of initial segments of N0 values and a lack of gain in expres-

siveness when adding negative indices are RAM’s arguments [1]. In [27], lifting this
domain restriction is considered to be a valuable extension to AQL as it would allow for
more meaningful indices for scientific arrays. With two examples we show that indeed
this can make a difference in practice.

When storing large-scale 2-D raster maps - such as satellite imagery - it may hap-
pen during reorganization that the map extent has to be changed by enlarging the map
footprint. Consider a satellite map of an island where coordinates are aligned so as to
have a zero index value in one corner of the map. Assume a situation like in the past
where the territorial claims on the sea have been extended from 12 miles to 200 miles.
Adjusting the map by shifting the zero point to the new position will invalidate all ex-
isting references and geocoordinate-to-index mappings, while extending the map into
negative values with an unchanged zero reference will keep the map intact against all
external access. Similar arguments hold whenever arrays have to be kept extensible,
such as in underwater exploration.

Another use case is filter kernels in imaging as discussed towards the end of Section
2.1.2. Usually, such kernels mathematically are treated as having their origin in the
center – a 3x3 kernel, for example, has a support of −1,0,+12 – which naturally leads
to negative indices.
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3.1.2 Value Set

Another issue is how to reasonably define the set of values an array can hold. Since ap-
plication domain independence is a common design goal, all models attempt to remain
generic in their choice of types; still some restrictions are imposed.

RAM, with its purpose being the array component of the MonetDB system, assumes
relational attribute types; support for complex types is explicitly omitted for reasons of
simplicity. AQL’s embedding into the nested relational calculus allows for handling
other complex types such as sets and tuples efficiently in the core language. AML and
AQL support nesting, i.e., arrays are allowed as array values.

In AML, however, definition of the value set is not concretized at all, leaving value
semantics completely to the implementation. This has severe implications on optimiz-
ability as the optimizer will run into black boxes while analyzing the query and, hence,
cannot natively understand expressions in their entirety.

ARRAY ALGEBRA provides a plug-in semantics where arbitrary data types can be
accommodated, however, with clear rules on how to orchestrate them into the overall
model. Among these explicitly stated requirements are commutativity and associativity
of a condenser summarization function (to allow efficiency-increasing rewriting) and
the homogenous algebra property (to obtain well-defined induced operators).

We, therefore, adopt the position that a concise value set semantics is an asset in any
kind of formal array model.

3.2 Operations
Finding a suitable set of operators is a major challenge in the design of array models.

In most models – ARRAY ALGEBRA, AQL and RAM – a generic ”array genera-
tor” is defined to possibly cover a large extent of these high-level operators. Although
different in style (ARRAY ALGEBRA uses array tabulation while AQL and RAM use
array comprehensions) we believe these operators to be of equal expressiveness. AML
does not have any ”from scratch” constructor.

ARRAY ALGEBRA, AQL, and RAM also introduce an explicit aggregation mecha-
nism. ARRAY ALGEBRA additionally proposes a sorting operator.

When examining examples of practically relevant operators provided as examples
in the literature we reviewed, two main classes of operators could be identified.

3.2.1 Domain Operators

Domain operators or geometric operators are those which are defined on and manip-
ulate an array’s domain. All of these have in common that they do not depend on an
array’s value set, i.e. they can be kept generic for any type of array. Operators found in
relevant literature include at least the following:

• Reshaping is the process of extracting a subarray from a given array by eliminat-
ing cells from the input array in a manner which preserves the array properties,
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i.e., keeps the resulting array compact and with axis-parallel boundaries. subslab,
subsample, trim, section and evenpos are examples for this kind of geometric op-
erator. ARRAY ALGEBRA, AQL and RAM support these operators by means of
allowing for index operators in their construction operators. AML, operating on a
higher-level, defines the generalized subsample operator for this purpose, which
can mimic all operators mentioned except for section.

• Subscripting can be considered a special variant of reshaping where the single
cell value obtained is interpreted as a 0-dimensional array singularity.

• Combining creates a new array that consists only of values copied from already
existing arrays. The most commonly found example is the concatenate operator.
All models investigated introduce some sort of a choice operator for indexing to
allow for choosing values from different arrays depending on a boolean function,
which again can be lifted to an array operator by the general construction operator.
AML introduces the merge operator for this purpose. When allowing cell-values
that have complex types, specific variants of array combination can be defined
like zip, f latten and nest.

• Permuting is the process of reordering an array’s cell-values. The most com-
monly found representative is the transpose operator. AML is the only language
reviewed that does not give direct support for such an operation.

3.2.2 Value Set Operators

The other class of operators can be lifted from operators defined on an array’s domain,
which we refer to as value set operators. All array models discussed allow for user-
defined functions to be mapped to an array.

3.2.3 Further Operators

Several operators do not fit the above classification, but still are indispensable.

• Aggregation is the process of summarizing an array along one or more dimen-
sions making use of some aggregation function. ARRAY ALGEBRA, AQL and
RAM model the aggregation operator explicitly. AML does not explicitly pro-
vide aggregation, but allows it implicitly through a user-defined function passed
to the apply operator.

• Regional application is the process of manipulating cells in an array by also tak-
ing into consideration the neighborhood of the particular cell. Actually, this is
a mix of domain and aggregation operations: domain operations serve to fetch
values from cells in some given distance to the cell under inspection, and ag-
gregation combines the values obtained thereby into the value assigned to the
result cell. ARRAY ALGEBRA expresses such operations through a combination
of MARRAY and COND as shown in the filter kernel example. AML’s apply
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operator is a good example of an operator that exploits structural properties of
regional application.

• Sorting is the process of reordering an array’s cells along a specific dimension
according to an ordering function induced from the value set. ARRAY ALGEBRA

is the only formalism providing such an operator.

3.2.4 Expressiveness

Arrays can be represented straightforward as sets of (index,value) pairs; hence, a com-
parison of array model expressiveness with that of the relational model is a natural
question.

Libkin, Machlin, and Wong show that NRCA and, hence, AQL have the same
expressive power as relational calculus plus ranking [27]. Machlin extends this with
important results with regard to the complexity of array indexing; see [27] and, in par-
ticular, [29]. ARRAY ALGEBRA adds the SORT operator. Intuitively, this means an
additional step in expressiveness, but how does this get manifest? According to Libkin
et al ranking is already required to express arrays. We investigate into this by looking
at the mapping of the SORT operator to the relational model. In our sketch we resort
to one-dimensional arrays for simplicity. Assume array A be given as A = {(x,v)|L ≤
x ≤ H,v ∈ V} for some L,H ∈ Z with L ≤ H. We can immediately interpret this as a
binary relation A ⊂ Z×V . The SORT operator, in this view, needs to assign different
indexes to the cell values; reordering is guided by the sorting predicate. This is what
we are going to express as a relational query now. Notably, ranking is not part of core
relational algebra – a shortcoming observed in [26] where ranking is suggested as a
first-class query functionality. Therefore, we resort to SQL and write

SORT (A,1,r)
≡

(select x f rom R order by r(A,x))
×

(select v f rom R order by x)

Note that a = 1 due to our limitation to 1-D arrays.
The difference to NRCA and other formalisms is that the sorting criterion, r, is not

predefined through some property (such as the total ordering of the cell type) but vari-
able: a user can specify any sorting predicate expressible within the overall framework.
In other words, SORT actually is a higher-order construct, a functional.

Now that we are sensitized we observe that this occurs in another place as well:
ARRAY ALGEBRA’s COND(◦,X ,x,e) is a higher-order construct which is parametrized
with the aggregation operation ◦. Conversely, conventional formalisms assume a fixed,
hardwired set of aggregations.

Situation is similar with MARRAY . Although there is no obvious function parameter
as the ◦ in COND, the constructor expression e in MARRAY (X ,x,e) can (and usually
will) contain function symbols defined on the array’s value set V .
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This modelling of arrays as completely second-order formalism seems natural, con-
sidering the definition of arrays as being functions. Libkin et al use relational algebra
plus ranking for their equivalence proof; however, the ranking property assumes a to-
tally ordered index set and, as such, is only used for establishing the array model and
not for introducing an array sorter. As it stands, beyond ARRAY ALGEBRA we are not
aware of any formalism containing a sorter.

So where is the limit in expressiveness? ARRAY ALGEBRA tentatively is con-
strained by the requirement of being safe in evaluation – any array expression can be
computed in a finite number of steps if each of the cell type operations involved does
so. The proof is straightforward – all core operations iterate a bounded number of times
over a finite number of cells – and, therefore, is omitted here.

This restriction excludes all array queries which inherently are recursive, such as
matrix inversion, terrain visibility computation, and runoff simulations. We feel that this
is a natural borderline where the database performs efficient information extraction from
massive data sets (possibly including server-side preprocessing), while the application
exercises higher level – often size sensitive – algorithms on the data delivered.

3.3 Relational Embedding
RAM separates the array model from the relational model, its implementation, however,
maps arrays to relations which are accessible by regular SQL. AQL is embedded into a
comprehensive model, nested relational calculus. For AML, the relational embedding is
not discussed in [31, 32], instead a prototype implementation embedded into MatLab is
reported. ARRAY ALGEBRA doesn’t make an assumption about some embedding data
model, it just provides typed arrays – a unique feature – as the basis for an array sub-
model. Its implementation, rasdaman, deviates from the common path of combining
arrays with relations and, instead, relies on the object-oriented model of the ODMG
standard [7]. This, however, is only a slight deviation; in practice it means that named
sets of arrays, called collections in ODMG, are used instead of tables. Such collections
contain two attributes, a system-maintained OID and the array itself. References using
the OIDs as foreign keys represent a convenient means to establish references from
elsewhere. This technically motivated approach acknowledges the fact that (usually
large) arrays are best physically separated from the (usually small) conventional tuples.

Currently we work on an embedding of both array model and query language into
a standard relational environment. Goal is to allow array definitions on attribute po-
sition so that the previously introduced OID/reference mechanism becomes a hidden
implementation detail. For example, a table definition containing both alphanumeric
and array attributes may look like this:

create table R(

id: integer not null,

whenTaken: date,

image: array<

struct{ unsigned char red, green, blue; },
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[0:4999, 0:4999]

>

)

Based on such a unified model, mixed queries can be supported which involve both
tables and arrays. While such mixed queries are possible, for example, in AQL, our
approach adds the typing facility which proves valuable for a cost-based query mediator
where array table sizes, intermediate result estimation, etc. guide subquery dispatching.

Let us remain for a moment with the above table definition containing a typed array.
It shows why arrays cannot easily be implemented as object-relational extensions: An
array, being a function, is a higher-order construct. Similar to a set, a stack, etc., an array
is not a mere data type, but a parametrized data type constructor (”templates” in pro-
gramming languages like C++) whose operators are functionals. Sets, stacks, and the
like need to be instantiated with the type of the values they hold; in the case of arrays,
instantiating them requires provision of a cell data type and a domain extent (which, as
done in rasdaman, can be of fixed size or variable). Object-relational database systems
(ORDBMSs) normally allow only runtime definition of data types, not of data type con-
structors. Hence, ORDBMSs with array support are constrained to a few selected data
types; Oracle 11g, for example, supports only 2-D arrays over hand-picked pixel types
while the rasdaman array DBMS allows n-D arrays over flexibly defined cell types [36].
One notable example to this is Predator [35] – however, at the expense of server-side
programming so that, in the end, Predator offers some selected hand-programmed array
data types, but no general array concept nor array type runtime definition via DDL like
in rasdaman.

4 Implementation Aspects
Although this contribution focuses on conceptual modeling, we want to touch upon
implementation issues to the extent necessary for discussing the impact of model design
decisions. More details on efficient architectures for array storage and query processing
and, in particular, optimization, can be found, e.g., in [2, 27, 40, 47, 13, 46, 10, 24].

4.1 Architecture
Despite this paper is not about implementation, we briefly address architectural issues to
complete the plot and motivate physical optimization discussion below. While all array
models investigated are implemented, their degree of comprehensiveness and function-
ality differs substantially. The same holds for the implementation platforms.

The AML implementation relies on MatLab for processing of array expressions.
While this is suitable for desktop use and experimenting, there are issues with scalability
in view of Tera- to Petabyte array sizes and large numbers of concurrent accesses.

A prototype implementation of the AQL language has been done in SML, a general-
purpose functional programming language; this implementation is not reported to act as
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a database server which can handle efficiently arrays much larger than main memory,
but it allows to read in and process data files containing arrays.

As such, both systems compete with conventional imaging systems which have
much more functionality while sharing the same array size limitations.

RAM, being embedded in the relational MonetDB system, maps arrays to relations;
hence, a conventional set/tuple based engine is used for query processing. On a side
note, this precludes RAM from handling large, dense imagery like the dozen-Terabyte
airborne image of France which is maintained by the French National Geographic In-
stitute in a rasdaman / PostgreSQL installation.

The rasdaman implementation employs a middleware architecture where multi-
dimensional arrays are partitioned into multi-dimensional sub-arrays called tiles. These
tiles, which represent the units of disk access, are stored in BLOBs (binary large ob-
jects) inside some relational or object-oriented database, such as PostgreSQL or O2. A
spatial index helps to quickly determine the tiles affected by a query. Query processing
relies on tile streaming: Physical query operators follow the open-next-close (ONC)
protocol for reading their inputs tile by tile, and likewise they deliver their results in
units of tiles.

Based on this processing paradigm, the rasdaman architecture follows a conven-
tional multi-user DBMS approach, however, with all components crafted individually
to accommodate the special needs of array processing. Array definition and query lan-
guages, rasdl and rasql, are available to the application via command line tools, visual
tools, and C++ and Java APIs. The client/server communication protocol connects
clients to the DBMS server. A dispatcher distributes incoming queries among the ras-
daman server processes running. Each server process (see Figure 3) receives queries
and parses, optimizes, and executes them. Auxiliary modules include catalog manager,
index manager, as well as cache and transaction manager. For example, the catalog
contains the array and collection type definitions against which semantic checks (like
boundary checks for array dimensions not containing open limits) are performed during
query analysis. The base DBMS interface layer abstracts from the particularities of the
underlying DBMS. Adaptors exist for PostgreSQL, MySQL, Oracle, DB2, Informix,
and the file system. Thereby, both array data, rasdaman-internal array metadata, and
non-array application data all end up in the same underlying database. As practice
shows, this information integration considerable eases database administration.

4.2 Optimizability
In this section we address array optimization. Goal is not to provide an extensive
overview on array query optimization – see, e.g., [40] for a more in-depth treatment
– but to investigate how well the formalisms under evaluation lend themselves to opti-
mization. This is inspected for both logical and physical plan rewriting.

27



Figure 3: rasdaman system architecture (dark grey) situated between application and
base DBMS layers (light grey)

4.2.1 Logical Level

In the rasdaman system, ARRAY ALGEBRA serves to define the complete architecture,
including query semantics, optimization, and storage management. In [40] a list of 150
rewriting rules is given, of which 40 serve to bring a query into canonical shape while
the remaining 110 are optimizing. For our discussion we pick rules where the cost
benefit is immediately visible.

The following two rules push down spatial subsetting into induced operations. The
class of induced operations applies a unary or binary function which is defined on the
cell type simultaneously to all cells of an array, similar to the AQL APPLY operator.
Recall that we differentiate subsetting into trim, which extracts a sub-array while main-
taining its dimensionality, and sect, which extractrs a hyperslice of the array, thereby
reducing its dimensionality. We give rules for binary operations ◦ and arrays E1 and E2;
◦ind denotes the corresponding induced operation:

trim((E1 ◦ind E2),D) ≡ trim(E1,D)◦ind trim(E2,D)
sect((E1 ◦ind E2),D) ≡ sect(E1,D)◦ind sect(E2,D)

Induced operations require that the operands match in their domain extent D; should
this not be the case, then functions like scale and extend allow adjusting extents.

The next rule addresses condensers:

COND(◦,X ,x,(A◦ind B)[x])≡

COND(◦,X ,x,A[x])◦COND(◦,X ,x,B[x])

For a concrete example, assume addition as the cell type operation. The rule, then,
can be written straightforward as in the rasdaman query language:

add cells(A+ind B)≡ add cells(A)+add cells(B)
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The gain obviously lies in the fact that the expensive cell-wise addition +ind is replaced
by the scalar addition +.

Recently, further optimizations have been added such as merging of suitable oper-
ations into conflated expressions which then are compiled on the fly for either CPU or
GPU execution [24][43].

AQL adds three array rules to its set, tuple, and conditionals rewriting:

(β p) [[e1|i < e2]][e3] i f e3 < e2 then e1{i := e3}else⊥
(η p) [[e[i]|i < len(e)]] e
(δ p) len([[e1|i < e2]]) e2

The (β p)-rule avoids intermediate array generation in case the array only needs to be
subscripted. The (η p)-rule circumvents retabulation of an already existing array, while
the (δ p)-rule suppresses tabulation of an array in case only its length is needed. Such
rules provide a powerful approach; an optimizer could spot targets for higher-level op-
timizations similar to the ones used in rasdaman. However, it remains to be shown how
exactly such an optimizer would work and how efficient it can be in practice.

The AML optimizer mainly relies on pushing down the subsample operator. For
example,

SUBi(P,MERGE(Q,A,B))

can under certain assumptions be rewritten as

MERGE(Q′,SUBi(P′,A),SUBi(P′′,B))

thereby allowing to early reduce the size of arrays that are processed in main memory.
As the AML model does not explicitly deal with cell data types, but rather treats them
as a ”black box” provided by some concrete implementation, there are no rules optimiz-
ing combination of AML core operations and cell operations like ARRAY ALGEBRA’s
treatment of induced operations. Aside from that, such optimizations bear an interesting
potential which would be worth evaluated in real-life scenarios.

In RAM, optimization has been investigated in [46, 10] based a casy study from
the domain of multimedia analysis. Logical optimization is effected at the intermediate
algebra level by exploiting equivalence rules. These allow for elimination of identity
transformations, effective handling of arrays with constant expressions, and avoiding
the computation of unused portions of intermediate arrays. The latter corresponds to a
pushdown of trim and slice operations in ARRAY ALGEBRA.

4.2.2 Physical Level

Physical optimizations are very much determined by the storage and processing model
adopted. As outliend in Section 4.1, the storage model relies on partitioning arrays
into sub-arrays of similar dimensionality, called tiles [13]. Any tiling is possible as
long as it constitues a partitioning, i.e.: covers the complete array and does not contain
overlaps (see Figure 4. Actually, the first requirement is relaxed in that empty tiles are
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Figure 4: sample 2-D and 3-D array tilings

not materialized on disk. The tiling scheme adopted for storage is a tuning parameter
which can be chosen in a physical layout sub-language integrated in the overall query
language.

Query processing relies on tile streaming where operations in the query tree read
and process tile by tile [40, 47, 13], thereby allowing to process arrays whose overall
size by far exceeds virtual memory. Many important operations support tile streaming;
among the few blocking operations are scaling and geo image reprojection, for example.

Various physical optimizations on this model have been investigated [40, 14, 17].
Among the most basic set of rules, which justifies tile streaming, is the following one
grounding on the commutativity and associativity requirement stated on condenser op-
erations. For some tiling TD = {D1, ...,Dn} of array A’s domain D = dom(A) the con-
dense operation can be rewritten as

COND(◦,x,D,A)≡

COND(◦,x,D1,A)◦ ... ◦COND(◦,x,Dn,A)

In the end, both evaluation sequence within a single tile and the sequence of tile
inspection can be chosen freely [40, 47]. This allows to implement several efficiency
increasing measures for condensers and beyond, such as unary undiced operations:

• If the aggregation operation addresses all or part of a array data area with a tile-
based execution strategy, then the tile sequence can be det ermined by its input
tile stream.

• The tile read sequence can be adapted to the physical storage sequence allowing
for fast burst read.

• The tiling layout can serve as a distribution strategy for intra-operator paralleliza-
tion. In this context we note that the reduce operation has the so-called distribu-
tivity property introduced in [15]; this property is a suffi cient parallelization cri-
terion for user-defined SQL aggregates [28].

Garcia Gutierrez investigates the performance speed-up potential of query mate-
rialization in the practically relevant case of image scaling [14, 17]. She shows that a
statistics-driven dynamic pre-aggregation in fact can boost query response times by sev-
eral orders of magnitude, even outperforming the classical approach of image pyramids
[6] as used in Geographic Information Systems (GISs) since long.

30



For AQL, no physical optimization strategies have been published to the best of our
knowledge.

In AML, physical optimization is addressed through what is called plan refinement
[32]. Main goal is to eliminate unnecessary physical operators from the plan and to
determine a good tile (there called chunk) inspection order. If necessary, chunk reorder-
ing operators are inserted for that purpose. In particular when arrays are combined
which differ in their tiling a naive tile access strategy can lead to multiple reads of the
same tile, thereby deacreasing performance. In the AML implementation, MonetDB,
strategy is to determine an efficient sequence, if necessary involving materialization of
re-tiled array fragments.

4.3 Application Studies
In this section we revisit the motivational examples. To get more down to earth we use
not algebra, but the rasdaman query language, rasql.

• In the satellite image scenario, the following query derives the NDVI from all
Landsat scenes stored in collection (table) LandsatScenes:

select (ls.red-ls.nir) / (ls.red+ls.nir)

from LandsatScenes as ls

• Given a collection HeadScans containing 3-D normalized scans and a single-
object collection HippoCampus with a 3-D bitmask defining the Hippocampus
area, the following query delivers brains with interesting activations in that brain
area:

select png( hs[ $1, *:*, *:*] )

from HeadScans hs, HippoCampus mask

where count_cells( hs > $2 and mask )

/ count_cells( mask ) > $3

Positional parameters indicate values to be substituted by user input: $1 is the
frontal slicing point, $2 the intensity threshold value, and $3 the confidence value.

The query for minimum age of the subjects found can be retrieved in a rasql/SQL
integration (which is currently under work) where an additional relational meta-
data table BrainMetadata(name,age,scanOid) is involved:

select min( bm.age)

from HeadScans hs, HippoCampus mask,

BrainMetadata bm

where ( count_cells( hs > $2 and mask )

/ count_cells( mask )

) > $3

and oid(hs) = bm.oid
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• In the astrophysical example, the first query was ”In a (x,y,z, t) datacube, orthog-
onal spatial slices at location (x0,y0,z0) for time t0”; in rasql, this is expressed
like this:

select a[ x0, *:*, *:*, t0 ] from a

select a[ *:*, y0, *:*, t0 ] from a

select a[ *:*, *:*, z0, t0 ] from a

The second query combines two simulations running in parallel by displaying the
ratio of the last five timeframes generated:

select log( a.bm_T / b.bm_T )

[ *:*, *:*, *:*,

(sdom(a)[3].hi-5):sdom(a)[3].hi ]

from run256x6 a, run256x6_cooling b

More use cases can be inspected at the earth science standards showcase www.earthlook.org.

4.4 Industrial Impact
In industrial world, Oracle offers the GeoRaster cartridge for 2-D geo raster imagery
stored in a database [34]. Instead of a rigorous embedding into SQL there are procedural
constructs in PL/SQL which accomplish raster access as well as invocation of a set of
predefined functions. The following sample code, taken from [34], extracts a channel
from, say, an RGB map and scales it to a 700x900 image:

declare

g sdo_georaster;

b blob;

begin

select raster into g

from uk_rasters

where id = 4;

dbms_lob.createTemporary(b,true);

sdo_geor.getRasterSubset(

georaster => g,

pyramidlevel => 0,

window => sdo_number_array(0,0,699,899),

bandnumbers => ’0’,

rasterBlob => b);

end;

In rasql this query corresponds to
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select g.green[0:699,0:899]

from uk_rasters as g

where oid(g) = 4

Due to the procedural, sequential style of the getRasterSubset invocation there is
little chance of internal optimization. Also, there is no indication for any support of
functional nesting in raster expressions.

The rasdaman system is available in a dual-licence model, as open-source rasdaman
community version (see www.rasdaman.org) and as enhanced, commercial rasdaman
enterprise version (see www.rasdaman.com).

5 Conclusion and Outlook
In this paper, we have surveyed array database theory which is gradually entering into
a consolidation phase. Three main contributions towards this are made in this paper.
First, we have presented an overview of four important array database models, thereby
discussing commonalities and differences. Further, we have shown that ARRAY AL-
GEBRA can express each of these (while the inverse does not hold) by inspecting all
relevant aspects of both data model and operations. Finally, discussion of architectural
and optimization issues has shown suitability of ARRAY ALGEBRA to support all these
levels, up to an implementation, rasdaman, which is in successful operational use.

The common, agreed nucleus consists of the notion of arrays as functions which map
points of some hypercube-shaped domain to values of some range set. Following data-
base tradition, either calculus or – more often – algebra are used as modeling paradigm;
both work out well for this information category. Minor divergences appear in the
hypercube’s extent (mainly regarding the use of negative coordinates) and in the cell
type. All models embed arrays into relational world, either by providing conceptual
stubs (like ARRAY ALGEBRA) or by adding relational facilities explicitly (such as AQL
and RAM).

While each of the models has its individual merits and has sound formal arguments
for its operator choice, major differences can be found in the operation set chosen and
the rigor applied in their semantics definition. Aggregates are seen as important, but
sometimes modeled explicitly and sometimes only implicitly. Interestingly, sorting of
array slices appears only once – in ARRAY ALGEBRA – although it is indispensable for
a large class of practically relevant queries.

In summary, ARRAY ALGEBRA is powerful enough to express all models inves-
tigated; the inverse is not true, as no other model offers an equivalent to the SORT
operation. Hence, we feel confident that ARRAY ALGEBRA represents the state of the
art in array database modeling.

Implementation of the models and their practical evaluation varies. While some
researchers report on lab experiments (AQL), others describe complete system imple-
mentations (AML, RAM), sometimes even in operational use (ARRAY ALGEBRA).
The ARRAY ALGEBRA implementation, rasdaman, has been exercised in remote sens-
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ing, mapping, and oceanographic services (see, e.g., www.earthlook.org), climate mod-
eling, astrophysics, computational fluid dynamics, human brain imaging [42], and gene
expression analysis [38]. Interestingly, several years of practical experience with oper-
ative rasdaman installations so far have not led to any major redesign, but mainly to the
development of further dedicated optimization techniques which fit well into the overall
algebraic framework. Rona Machlin dubs rasdaman ”the most comprehensively imple-
mented array DBMS” [29]. In the application domain, ARRAY ALGEBRA concepts
have had much impact on the design of the Open GeoSpatial Consortium (OGC) Web
Coverage Processing Service (WCPS) geo service standard [3, 4] and several related
OGC standards.

All in all, albeit young as a database discipline, arrays are making their way to a
first-class data abstraction, thereby completing the family of collection types supported
by databases. Still, there are manifold research issues in this young discipline. We work
on extending the framework beyond arrays towards general meshes so as to allow re-
trieval on further spatiotemporal scientific data, such as Voronoi-type structures (adap-
tive grids can be handled already). Further, seamless integration of arrays as first-class
abstractions with standard SQL is being investigated. Along the same line, research
on an integration of the WCPS standard (which is crafted along the ARRAY ALGEBRA

concepts) with ontologies has started so as to allow for automated theorem proving
in Semantic Web environments. Use of the rasdaman system in further projects (and
standardization) in earth, space, and life sciences is expected to unveil new use cases re-
quiring additional functionality and optimizations. For Petascale services, cloud-based
distributed query processing is under investigation.
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