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Summary

The discussion between object-oriented and object-relational DBMS tech-
nology seems to be decided since some time, in favor of the second candi-
date. We unroll this question based on our experience with the design and
implementation of the array DBMS rasdaman which offers storage and
query language retrieval on large, multi-dimensional arrays such as 2-D
remote sensing imagery and 4-D atmospheric simulation results. This
information category is sufficiently far from both relational tuples and
object-oriented pointer networks to achieve a ”fair” comparison where
no approach has an immediate advantage.

The rasdaman system is implemented in a strictly object-oriented
manner. We discuss rasdaman on model, interface, and implementation
level and contrast our experience with concepts and concrete systems of
object-relational technology. To underpin and justify rasdaman design
decisions we also present rasdaman performance results. The rasdaman
system is in operational use and available in open source, so our results
can easily be reproduced.
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1 Introduction

Ever since object-relational database systems have entered the scene to
compete with (and, on the long run, commercially outperform) object-
oriented DBMSs the discussion is ongoing on which approach is bet-
ter fulfilling the promise of flexibly adding user-defined structures and
operations to databases. Meantime both technologies are around since
more than ten years, hence can be considered mature enough for a fair
comparison. Object-relational evangelists [29] have reported success sto-
ries in manifold non-standard situations, emphasizing both functional-
ity and performance of the approach [7][30][10][12]. Likewise, how-
ever, up to today proponents of the object-oriented field continue mak-
ing a convincing case for versatility and performance of such databases
[28][11][18][25].

With this paper we want to contribute a new facet to this discus-
sion. We unroll the question based on our experience with the design
and implementation of the array DBMS rasdaman which offers storage
and query language retrieval on large, multi-dimensional arrays. This
information category is sufficiently far from both relational tuples and
object-oriented pointer networks to no not give any of the approaches an
immediate advantage; hence, we believe it constitutes a ”fair” compari-
son ground.

In fact, no general-purpose DBMS, be it relational, object-relational,
or object-oriented, supports the concept of large, multi-dimensional ar-
rays. Such arrays appear in OLAP applications – which is not our focus
here – and in technical/scientific applications [16][4][6][21][19][2][20].
1-D arrays resemble timeseries as encountered in geo sensor webs and
life science lab measurements. The most common 2-D data type is the
raster image, as encountered in large volumes, e.g., in remote sensing;
microarray data in life science form another relevant class. By building
time series over 2-D data we end up with 3-D image time series. In ocean
and atmospheric simulation the full spectrum of spatio-temporal dimen-
sions is leveraged, ending up with 4-D data. This is not the end, though.
Scientific applications frequently make use of non-spatio-temporal di-
mensions, such as pressure, spectral frequencies, simulation-related addi-
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tional time axes, etc. This commonly leads to 5-D and higher. Statistical
databases with many more such domain-dependent dimensions, to drive
the story further, often range from nine to twelve dimensions, and high-
dimensional feature spaces can encompass thousands of dimensions.

A special case occurs when the array contains values at only very
few positions; such arrays are called ”sparsely populated” as opposed
to ”densely populated” arrays like images where every pixel contains a
color value. For sparse arrays, typically up to a data content of about 5%,
and their main query types (”OLAP” = Online Analytical Processing)
both dedicated (”MOLAP” = Multi-dimensional OLA) and relational
technology (”ROLAP” for Relational OLAP) is in use. None of this tech-
nology is suitable for handling, say, multi-Terabyte dense arrays.

Systems offering dedicated support for such arrays are called array
DBMSs. They pose quite some challenges on tuple-based technology due
to the substantially different structure and operations. While typically
several tuples fit into one database page, the converse is true for arrays:
one array normally requires a large number of database pages, which may
well range into the millions.

The rasdaman system is such an array DBMS, offering support for
both sparse and dense multi-dimensional arrays. Development started
at the heydays of object-oriented databases, and so it was natural to use
pertaining concepts, standards [9], and technology wherever possible. A
few years later object-oriented DBMSs more and more disappeared, and
rasdaman was adapted, over a number of years and depending on de-
mand, to a number of relational DBMSs. Today, both an open-source (see
www.rasdaman.org) and a commercial variant (see www.rasdaman.com)
are available and in active use, mainly in geo applications. EarthLook
(www.earthlook.org) is a publicly accessible demo site of rasdaman .

In this paper we attempt a comparison of design decisions and their
effects by focusing on the object-oriented paradigm (which has been used
by rasdaman ) and object-relational technology. The latter we pick be-
cause we have been asked many times why we do not use (or switch
to) the object-relational approach which was perceived as superior by its
proponents. To this end, we inspect conceptual model, interfaces, and
implementation of rasdaman . The remainder of this paper is organized
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as follows. In Sections 2, 3, and 4, array modeling, interfaces, and server
implementation are addressed, respectively. Relevant performance re-
sults are presented in Section 5. Finally, Section 7 gives conclusions and
outlook.

2 Array Modeling and Retrieval

Arrays represent functions from some Euclidean space (its domain) to a
value set (its range [16][6][19]. Array domains must have axis-parallel
boundaries. At each array position, a cell is located which holds a range
value. Arrays are typed, and collections (the ODMG correspondent of
tables) hold arrays of a particular type. Actually, rasdaman uses spe-
cialized collections where one attribute is a system-generated OID and
the other one is an array. Cell, array, and collection types are defined at
server runtime.

Arrays are stored partitioned into multi-dimensional subarrays called
tiles whereby each tile goes into a BLOB (binary large object). This
partitioning can be chosen arbitrarily, controlled by a storage layout lan-
guage which is part of the insert statement. Further, rasdaman maintains some tables
for catalog information, indexes, and the like. Storage overhead for all these is negligible in face
of the large array objects themselves.

In the remainder of this section we inspect array type definition, engine implementation, and
APIs with a focus on comparing object-oriented and object-relational concepts.

2.1 Array Type Definition
We recall that an array, being a function, is a higher-order construct. Similar to a set, a stack,
etc., an array is not a mere data type, but a parametrized data type constructor (”templates”
in programming languages like C++) whose operators are functionals. All of these have in
common that they need to be instantiated with the type of the values they hold; in the case of
arrays, instantiating them requires provision of a cell data type and a domain extent.

In rasdaman , a type definition language is provided which is based on ODMG’s Object
Definition Language, ODL [9]. The extension mainly is a template type which needs to be
instantiated with a C/C++ like atomic or composite data type and a domain. ”Open” bounds
(i.e., runtime-varying limits) can be defined on each dimension’s lower or upper bound. A
typical definition might look like this, it introduces 10,000×10,000 LandsatImages:

typedef marray<
struct{ unsigned char b1, b2, b3, b4, b5; },
[0:9999,0:9999]

> LandsatImage;
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The rasdlutility can create C++ header file definitions to sync program and database types.
Object-relational database systems (ORDBMSs) normally allow only runtime definition of

data types, not of data type constructors. Hence, ORDBMSs with array support are constrained
to a few selected data types; Oracle 11g, for example, supports only 2-D arrays over hand-
picked pixe l types while rasdaman allows n-D arrays over flexibly defined cell types. One
notable example to this is Predator [23] – however, at the expense of server-side programming
so that, in the end, Predator offers some selected hand-programmed array data types, but no
general array concept nor array type runtime definition via DDL like in rasdaman .

2.2 Array Retrieval
We introduce rasqlonly briefly, with a walk-through guided by didactics rather than by com-
pleteness; see [24] for a more comprehensive and formal treatment. Like SQL, a query returns
a set of items (in this case: either arrays or, in summarization queries, scalars). Subsetting of
arrays includes trimming (rectangular cutouts) and slicing (extraction of lower-dimensional sub-
arrays). The following query retrieves a 2000x3000 cutout (trim) from every Landsat satellite
image in collection LandsatImages:

select ls[ 1001:3000, 1001:4000 ]
from LandsatImages as ls

This works for any number of dimensions, and also allows wildcards to refer to the array bound-
aries. For each operation available on the raster cell type, a corresponding so-called induced
operation is provided which applies the operation to all cells of an array simultaneously. Both
unary operations (e.g., record access, cast operations, or constant multiplication for contrast
enhancement) and binary operations (e.g., masking an image) can be induced. An example is
”Band 3 of all Landsat images, with intensity reduced by a factor of 2”:

select (char) (ls.band3 / 2)
from LandsatImages as ls

Not only arithmetic, but also boolean operators can be induced. The query below masks out
all non-green pixels from a Landsat remote sensing image; the boolean result of the parenthesis
expression is nterpreted as 0 or 1, resp., so that a false value maps to black and a true value
retains the original color value:

select (ls.green > 130 and ls.red < 110 and ls.blue < 140) * ls
from LandsatImages as ls

In general, array expressions can be used in the select part of a query and, if the outer-
most expression result type is boolean, also in the where part. Therefore, we need a means to
”collapse” raster-valued expressions, such as induced comparisons, into scalar boolean values.
This is accomplished through so-called condensers which summarize over the array values, thus
representing the counterpart to SQL aggregation. Based on a higher-order generalized construct
the usual aggregates are defined, such as count cells, average cells, min cells,
max cells, all cells, and existence quantifiers. For example, the following query re-
trieves the ”percentage of green area per region in Landsat scenes”.
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select count_cells( ls.green > 127 and r )
/ count_cells( ls and r )

from LandsatImages as ls, Regions as r

The general second-order condenser allows to define add cells, etc., as in this example:

cond +
over x in [0:255], y in [0:255]
values ls[x,y]

Another second-order operator, marray, constructs a new array with some given extent and a
contents determined by a scalar expression used to assign a value into each raster cell position.
To this end, it defines locally scoped cell coordinate iteration variables. For example, a 256x256
checker-board array can be defined as

marray x in [0:255], y in [0:255]
values mod( x + y, 2 )

In practice, marray frequently appears in conjunction with condensers. The following example
illustrates this, deriving a histogram from 16-bit brain scans of unknown dimension:

select marray n in [0:16535]
values count_cells(b) = n

from BrainScans as b

Advanced applications of this pattern include filter kernels and general convolutions, up to the
Fast Fourier Transform. Interesting parallels also can be found with the relational group by /
having clause. A theoretical analysis of the expressiveness and complexity of array indexing
expressions is given in [20].

Let us turn to object-relational systems. While they allow definition of new data types they
generally do not support definition of parametrized data types (”templates” in object-oriented
languages like C++), that is: second-order constructs. Just like stacks or lists, which have to be
instantiated to obtain a concrete data type, arrays are parametrized with cell type, dimension,
and extent as we have seen with rasdl. Consequently, all object-relational implementations of
large arrays uniformly offer only a selection of hardwired array types. 2-D greyscale and RGB
arrays are common, with sometimes further concrete types added.

Predator [27] is a database system supporting ”Enhanced Abstract Datatypes” (E-ADTs). In
theory, the high degree of extensibility in Predator should make array support feasible. Still, the
array support implemented by the Predator group only offers selected array types, not a generic
array constructor. This observation is supported by the fact that the R*-trees implemented only
support 2-D arrays. Further, the effort of writing an E-ADT seems prohibitively high for most
practical purposes.

Another research prototype in this field is Paradise [13][14]. Arrays are supported indeed,
even with a comparatively simple tiling scheme for partitioned array storage. However, the
extension of SQL with only functions, but not second-order entities like arrays, precludes an
easy-to-read raster query language. For example, 2-D raster images come with only three dif-
ferent cell types: 8 bit, 16 bit, and 24 bit. The set of operations supported focuses on simple
cutout or subaccess operations; even access to components of composite cells is nontrivial. As
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with Predator, Paradise developers report a significant learning curve for familiarization [8]:
”One reason for this is that too much expertise ended up being required to use them”. In ras-
daman , conversely, rasdlallows to define new array types during runtime using a simple C-style
language.

3 Array DBMS Programming Interfaces
A central claim of ODBMSs is their seamless coupling with object-oriented programming lan-
guages. At the time rasdaman development started a number of ODBMSs was on the market
which, however, had very divergent and absolutely incompatible APIs. Any decision for a partic-
ular system, therefore, would involve a total commitment to the product. There was a standard,
ODMG [9], which, however, was supported seriously by only one product, O2 [3], although
other vendors claimed that, too. Actually, the lack of uniform interfaces allowing implementers
to switch from one product to another without major application redesign arguably is one of
the major drawbacks of ODBMS technology overall. Given the criticality of this decision the
rasdaman team performed a thorough evaluation and, ultimately made its decision in favor of
open standards and, hence, O2.

3.1 The C++ API
The rasdaman C++ API, which is conformant with ODMG, consists of two packages: rasliband
rasodmg. The rasodmgpackage implements all ODMG provided classes, such as for databases,
transactions, collections, result iteration, and the type system, while in the raslibpackage all
array specific classes are gathered, such as arrays, format converters, storage layout and tiling
definition.

At the very core of rasodmgis sending queries and receiving results, for which ODMG
foresees the oql execute() function which is freestanding, that is: it does not belong to any
class. As, at the time of crafting rasdaman , namespaces where not yet known in C++ world
this concept had to be emulated and so all raslibfunctions are prefixed with r , such as in
r oql execute().

Instances of class r OQL Query represent rasqlqueries. Following the set-oriented paradigm
of ODMG (which it, in turn, borrows from the relational model) a query result consists of a set
of persistent pointers, depending on the query result type either to scalar values or to arrays. To
correctly handle query results depending on their type, a class hierarchy for runtime typing is
included. For iteration over query results the template class r Iterator<T> is provided.

Class r Marray<T> is the central class representing with multi-dimensional arrays (Figure
1). This template is instantiated, depending on the query result, with either a C++ primitive type
or a user-defined structure. Spatial domains are provided to instances; to achieve flexibility
for danymically varying arrays this part of the second-order array construct is not modeled via
templates. For accessing and manipulating arrays the template class a rich, high-level interface
is provided with raslib.

Among the further functionality provided by is an overloaded array access operator, operator[]
for trimming and slicing of objects. In the special case that this operator receives only a single
point coordinate it coincides in semantics with the usual C/C++ single-element array accessor.
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Figure 1: C++ API class hierarchy for arrays

The following code snippet retrieves a result set containing three elements, as sample collec-
tion mr - as provided in the rasdaman distribution - contains three objects. The r OQL-Query
constructor serves to establish a query object which subsequently is shipped to the server by
means of r oql execute. This method accepts a query object and returns a set of smart
pointers of some type not specified at compile time – this reflects the fact that the result type is
constructed on the fly, depending on the actual query.

r_OQL_Query myQuery =
new r_OQL_Query( "select (char)sqrt(mr) from mr" );

r_Set<r_Ref<r_GMarray>> rasterSet;
r_oql_execute(query, rasterSet);
void r_oql_execute( r_OQL_Query query, r_Set<r_Ref_Any> result);

Result arrays obtained thereby can be readily processed in C++. In the example below we
first declare an iterator over the result set, in our case 2-D greyscale images; this type is known
because the rasdloperator has created an include file with the pertaining definitions. Array data
are delivered in the C++ memory layout and endianness of the client’s CPU, a service pro-
vided by the client/server communication layer of rasdaman which performs translation where
necessary. Therefore, we can directly print out, for each image delivered, all of its pixel values:

r_Iterator<r_Ref<GreyImage>> iter = rasterSet.create_iterator();
for (iter.reset(); iter.not_done(); iter++)
{

GreyImage myArray = (GreyImage) r_Ref<r_GMarray>(*iter);
int loX = myArray->spatial_domain()[0].low(),

hiX = myArray->spatial_domain()[0].high(),
loY = myArray->spatial_domain()[1].low(),
hiY = myArray->spatial_domain()[1].high();

cout << endl << "pixel data: " << hex;
for (int x = loX; x<= hiX; x++)

for (int y = loY; y <= hiY; y++)
cout << myArray->get_array()[x,y] << " ";

}

As can be observed, data transition between database and application code is smooth and
respects all C++ mechanisms like templates, overloading, and correct data representation. The
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principle shown readily generalizes to accessing arrays of any dimensionality and any cell type.
This is just half of the story, though. Client-side utility functions like the overloaded array
operator [] have turned out an asset making application development much easier1.

Compare this with the code for retrieving a GeoRaster object from an Oracle database. The
sample code shown has been taken from an Oracle White Paper [22]. It is written in PL/SQL to
retrieve a 2-D raster cutout:

declare
g sdo_georaster;
b blob;
begin
select raster into g from uk_rasters where id = 4;
dbms_lob.createTemporary(b,true);
sdo_geor.getRasterSubset(
georaster => g,
pyramidlevel => 0,
window => sdo_number_array(0,0,699,899),
bandnumbers => ’0’,
rasterBlob => b );
end;

Roughly, this query corresponds to a rasqlrewrite as follows:

select g.0 [0:699,0:899]
from uk_rasters as g
where oid(g) = 4

The main difference is not in the syntactic complexity of the Oracle code; much more im-
portant, raster data have to be shuffled over to C++ prior to using them in the way shown with
raslib. Aside from expected performance difficulties this leaves client-side coding in the
responsibility of the programmer, without honoring object-oriented programming and without
security support like include file generation. Such mechanisms, however, are not foreseen in
object-relational interfaces.

3.2 The Java API
For reasons of completeness, let us briefly glance at the rasdaman Java interface, rasj. In C++,
the second-order array construct is mapped straightforward to templates. As these do not exist
in Java, a substitute had to be found. The ”implementation” feature of java turned out helpful
to derive array types from a generic class, RasGlobalDefs. Below is an excerpt from the
javadoc generated class hierarchy:

class java.lang.Object
+--class rasj.RasImplementation
| | (implements org.odmg.Implementation)
| +--class rasj.RasODMGInterface

1these raslibfunctions are also heavily used in the server code.
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+--class rasj.odmg.RasObject
| (implements rasj.RasGlobalDefs)
+--class rasj.RasGMArray
| (implements rasj.RasGlobalDefs)
+--class rasj.RasMArrayByte
| (implements rasj.RasGlobalDefs)
...
+--class rasj.RasMArrayFloat

(implements rasj.RasGlobalDefs)

In this hierarchy, a separate subtype exists for every cell type. Atomic types are prefabri-
cated, other ones have to be created by the programmer. Obviously, the fact that the implemen-
tation class strategy cannot capture cell type parametrization of the array construct is a severe
drawback as compared to C++.

On instance level, however, handling is relatively similar to C++. Just as with the rasliband
rasodmgtwins encountered with C++, rasdaman Java applications need to import rasj.*
and org.odmg.*. In the code example below note that the Java API is more serious in its
naming, it reveals that the result collection is a bag rather than a set.

OQLQuery myQu = myApp.newOQLQuery();
myQu.create( "select (char)sqrt(mr) from mr" );
DBag resultSet = (DBag) myQu.execute();
Iterator iter = resultSet.iterator();
while (iter.hasNext())
{

RasGMArray result = (RasGMArray) iter.next();
byte[] pixelfield = result.getArray();

}

3.3 The Language Decision Revisited
C++ has shown significant advantages as server implementation language: a direct translation
of the object-oriented design into classes; maintainability and modularization elasticity during
experimentation phases involving substantial redesign of this or that component; and all this
coming with highly efficient code.

On the other hand, the team also faced severe problems. Most of all, at the time imple-
mentation started C++ compilers were far from being stable. Templates, which are extensively
used in the rasdaman code, caused compilers to simply crash or come up with surprising ideas.
Sometimes compile times reached geologic scales. Further, there was no standardization across
platforms, and STL (the C++ Standard Template Library) was just another library and in statu
nascendi, far from being canonical.

This is different today. At the time of this writing C++ programming has matured, ex-
cept maybe from small surprises with the GNU C++ compiler when a minor release change
brings along cinompatible changes so that the source code has to be adapted. Overall, a strictly
object-oriented design as well as higher level concepts such as patterns and idioms has proven
advantageous.
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Figure 2: Query box partially overlapping border tiles

4 Array Engine Implementation Aspects
The core design goals of rasdaman appear not so different from other large-scale information
system projects:

• Portability between different operating systems (Solaris, HP-UX, Irix, AIX, Linux) and
base DBMSs (initially O2 and now PostgreSQL, MySQL, Oracle, IBM DB2, IBM In-
formix).

• Code maintainability and extensibility, as the system is continuously being improved and
extended.

• Modularisation with a concise, easy to use interface to enable parallel development of
different modules.

• Efficiency in dealing with huge amounts of data and concurrent access.

4.1 An Architecture for Array Query Evaluation
The rasdaman architecture overall follows a classical client/server DBMS approach, however,
with each component engineered specifically towards array processing. Client APIs in C++
and Java represent the stubs for submitting queries. On server side, queries are unmarshalled,
parsed, optimized, and executed, based on auxiliary modules like catalog manager, index man-
ager, cache and transaction manager, and a persistent storage manager. The latter actually is
an adapter, it mainly is in charge of mapping storage accesses to the underlying DBMS (called
”base DBMS”). In the case of O2 this was as straightforward as can be – the smart pointer to
the object (such as a tile, a catalog descriptor, etc.) was passed to O2 which guaranteed to write
through until commit time. For the relational adapters, the adaptation code had to be written
following the well-known tuple access pattern. This made the storage manager code effectively
grow by a factor of 2.5 to 3. A complication arose because several relational systems do not in-
clude BLOB handling in their SQL, but require extra API programming. This has led to another
20% to 30% code growth, as can be seen, e.g., in module relblobif.

Query processing follows the usual steps of parsing, syntactic and semantic checking, opti-
mization, and query tree execution. The latter is based on the paradigm of tile streaming: each
node reads a tile, processes it, and passes a result tile or scalar on to the next higher node. Only
a few operators are blocking, such as the scale operation. Of particular interest in the context
of this paper is query operator evaluation, on this we will concentrate next.

Class Tile represents tiles. Its methods know how to process a tile, and, hence, these are
invoked during operator tree evaluation. In the simplest case of access tile data are just copied.
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No knowledge about tile extent and cell type is necessary, a byte copy turns out sufficient. Cell
type information becomes necessary whenever unary operations are to be executed, such as abs
or ln. Still, iteration can be kept straightforward by incrementing the target pointer in units of
cell size, regardless of the tile’s dimension. Common in real life, however, is partial access to a
tile as subsetting limits frequently do not align with tile borders (Figure 2). In this case, a multi-
dimensional iteration is required indeed. Interestingly, it turns out that a naive implementation
of tile iteration via nested loops has severe disadvantages. The number of loops nested is fixed
during compile time, and it is not straightforward to implement nesteds loops of arbitrary depth
with a decision at runtime. During implementation of a mechanism allowing for d-dimensional
dynamic iteration it further turned out that the loop housekeeping activities cause a substantial
overhead. Widmann [31], therefore, has proposed a method below which allows to efficiently
execute d-dimensional loops with d chosen at runtime: Performance analysis using a profiler

Algorithm 1 TILEITERATION

Require: A binary function f with non-empty input tiles T1,T2 and result tile Tres all
of which have the same extent.

1: initialize tile iteration vectors: x1 = get origin(T1),x2 = get origin(T2),xres =
get origin(Tres)

2: initialize current dimension inspected: dcurr = 0
3: while dcurr < dim(Tres) do
4: execute cell operation by addressing via the offsets obtained
5: increment position in x1,x2,xres for dimension dcurr
6: if xres exceeds upper bound of extent in dcurr then
7: reset position in current dimension dcurr to lowest index
8: dcurr+= 1
9: end if

10: end while

reveals that most of the time is spent in calculating the offsets in step 4. Increment computation
can be improved greatly by providing incorements a priori in a setup phase, and also by avoiding
multiplications.

Assuming linearised storage of array A, the one-dimensional distance in cells between vec-
tor x = (x0, . . . ,xi, . . . ,xd−1 and x′ = (x0, . . . ,xi + 1, . . . ,xd−1 is a constant integer value. If lin-
earisation is done along dimension 0 first, this increment vector ∆ = (∆0, . . . ,∆d−1 can be pre-
determined. The offset in bytes, then, is obtained by multiplying the ∆i with the length of
the cell type in bytes. As iteration now works directly on the offset the costly offset compu-
tation inside the loop is avoided. Still, however, invocation to r Minterval and r Point
are required to check the iteration boundaries. We, therefore, repeat the principle of precal-
culation and determine the number of repetitions ahead of the loop, which is given by ri =
hi(dom(T (, i)− lo(dom(T ), i)+1 per dimension i. All this is combined into a modified version
of our iteration vector, ∆′, which now holds, for each dimension, the total number of repetitions,
the increment per repetation (as given by the linearisation function), and the current repetition.

One key target in the design of the rasdaman system was support for user defined composite
base types in the DBMS. Structured base types are common when looking at the typical appli-
cation areas of multidimensional arrays. Examples are colour images with a red, a green, and a
blue component or remote sensing images containing different wavelength bands.

11



Figure 3: Class hierarchy for binary function objects

With a server knowing about the substructure of a cell it can offer extraction of components,
as well as dynamic recomposition. Not only is this convenient for the users of such a system,
it moreover bears excellent potential for better bandwith exploitation. Read the last one as:
better performance. By transmitting only one band of interest out of a 255-band Hyperion
hyperspectral satellite image data set the gain in transmission speed (which turns out to be one
of the overall performance determining factors in array DBMSs, see Section 5) is immediately
visible. Recombination, on the other hand, can save processing and transmission time – think
of the same hyperspectral satellite image where one single image can be retrieved by the client
which may consist red, green, and blue bands in case of the visible spectrum or near-infrared,
red, and green for false-color images.

Earlier we had stated that object-relational mechanisms lack the necessary data type con-
structors. Now we encounter one point where this gets manifest in implementation. To make
operation selection separate from operation execution, a function which returns a function is
needed; with its function objects C++ supports a direct implementation of such a design pattern.
Function objects are classes with an overloaded operator() allowing objects of these classes
to be used in a function call syntax, thereby blurring the distinction between a function and an
object. This allows for a very clean and comprehensible syntax for applying operations on cells,
as demonstrated by the following example which describes part of the execBinaryOp()
method internals in pseudo code. Inside the method, a typical invocation of the cell evaluation
function myOp might look like this pseudo code:

BinaryOp* myOp;
myOp = Ops::getBinaryOp( op, resType,

op1Tile->getType(), op2Tile->getType() );
for each result cell cellRes in the result tile area:

(*myOp)(cellRes, cellOp1, cellOp2);

In the first line, the operation is identified; due to the overloading of the query language
operators this lookup is based on the complete operation signature. The parser delivers the
opCode as an enumeration value while input and result types of the operation are provided in
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op1Tile-> getType(), op2Tile->getType(), and resType, resp. Subsequently,
execution iterates over the result array area identified and inspects each cell by calling function
pointer *op passing pointers to the result cell location, cellRes, and the input operand cells,
cellOp1 and cellOp2. For each of the previously discussed categories - unary, binary,
and condense operations - there is one type of function in class Tile, represented by abstract
classes defining the basic cell evaluation operations. Figure 3 shows that excerpt of the class
hierarchy which is in charge of binary induced operations. Method operator() is central to
this modeling. In BinaryOp it remains abstract, a variety of subclasses implement the concrete
query operators for different type combinations.

Using abstract base classes as the interface opens up freedom for operation implementation:
by relying on the type system’s conversion functions it is easy to implement an operator with
broad applicability over all the types supported. By providing specialized classes for particular
type combinations, important use cases can be tuned individually. Internal complexity is effec-
tively shielded from both query evaluation and operation execution and only relevant locally, in
the Catalog Manager module. For example, introducing a new primitive type minimizes code
changes required in the execution engine. This has proven advantageous, for example, when
complex numbers have been introduced into the rasdaman type system.

This function object idiom can be used again when it comes to operations on composite cell
types. The function objects for operations on structures retrieve function objects for each struc-
ture component and then simply apply these objects on all elements. Hence, it is not necessary
to implement function objects specifically for each user defined structure.

So far we get the impression of quite compact code. However, there is a drawback given by
sheer combinatorial multitude of signatures. ODMG defines nine primitive types [9], and each
binary operation has the choice of type for two input types and one result type. This yields a
total of 9,477 possible operation signatures. While a dedicated implementation for each input
type combination certainly would lead to an extremely efficient implementation it is utterly
impractical to have that many classes – even if generated automatically the consequence would
be huge, unmaintainable code and excessive compile and link times. An alternative is to use a
dynamic conversion of operands to the corresponding C++ types during execution.

This is the approach adopted for the rasdaman type system. Function objects for all opera-
tions are provided for the three basic type categories supported, namely floating point numbers,
signed integers, and unsigned integers. During execution both operands and result have to be
converted into the highest precision type of the respective category.

The conversion functions are invoked prior to operation execution on the base types of
operands and result, which both are stored in the internal state of the function object representing
the operation. Using dynamic conversion, implementing the 13 binary operations supported in
rasdaman requires 39 classes for the function objects. For frequently used types optimised
implementations can be provided. Currently this is implemented for 8-bit unsigned integers
used, for example, in 24-bit RGB images.

In summary, combining function objects with the object-oriented design separates applica-
tion of functions to cells from the multi-dimensional iteration. Further, operation selection can
be performed independently by encapsulating it in the Catalog Manager. This opens up vistas
for optimizing specific cell types without affecting the operation execution module, such as the
abovementioned support for 8-bit integers. The virtual function calls occurring with the func-
tion object approach can be resolved efficiently by the compiler. Finally, hardcoded support
for specific situations, such as greyscale and RGB cell types, can be added in a straightforward
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Figure 4: Performance gain through object-oriented engine implementation (left) and
advanced optimization (right)

manner by specializing class Tile.

5 Performance
Due to space limitations only a brief glance at performance data is possible. The effect of the
object-oriented implementation of the rasdaman core engine is shown in Figure 4 (left). As
can be seen the gain in using function pointers and optimized multi-dimensional iteration over
a naive nested loop implementation is substantial as soon as only a few operations are involved
in a query.

In Figure 4 (right) the effect of an advanced optimization can be seen, namely just-in-
time compilation (JIT) [17]. In this approach, suitable fragments are extracted from incoming
queries, transformed into C code, compiled, and dynamically linked into the server. The dia-
gram shows processing time of a 5122 tile when applying n floating-point multiplications on
each pixel. ”ORIGINAL” refers to unoptimized execution, ”COLD” to JIT-based query execu-
tion including compilation, ”HOT” to the case that the corresponding code is already linked in
from a previous query, ”TAILORED” constitutes a hand-optimized version for comparison.

On www.earthlook.org a publicly accessible showcase with 1-D to 4-D geo-spatiotemporal
data sets is available to test rasdaman performance under real-life conditions. Typically, even
complex rendering queries take abuot 400 ms.

6 Related Work
In the domain of array databases, AQL [19] is one important representative offering a powerful
array query language. Its implementation relies on SML, a general-purpose functional program-
ming language, and NetCDF files. RAM [2] implements an array model on top of a relational
model and comes with an array query sub-language embedded into SQL. RAM is implemented
as part of the MonetDB database system by mapping the algebra to relational algebra, i.e., ”hard-
coding” arrays in the core. In particular, object-relational concepts are not used either. AML is
an array algebra implemented on top of MatLab for processing of array expressions. None of
these system is reported to use an object-relational platform.
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Functions which return functions to the best of our knowledge are not supported by OR-
DBMSs, hence there is no counterpart to the rasdltype definition language and rasqlsecond-
order functions. Predator [27] and Paradise, two object-relational systems with array support,
have been introduced in a previous section. As discussed, they do not offer generic array support,
but only hand-picked array types. Additionally, implementation of such data types is reported
to be prohibitively complex. The rasdaman system, on the other hand, has been reported as the
”most comprehensive implementation” of an array DBMS [20].

7 Conclusions
We have studied application of object-oriented and object-relational techniques for a specific
domain where a mapping to relational tuples, as usually done in object-relational modeling, is
not feasible. Likewise, object-oriented technology per se does not offer any suitable solution
off the shelf. Hence, we feel that this is an interesting situation for investigating flexibility and
adaptiveness of both concepts.

Object-orientation has been pursued in both model, interface, and implementation. The
array model makes use of existing concepts of the ODMG 3.0 standard; introducing multi-
dimensional intervals and arrays appeared possible seamlessly, extending ODMG’s ODL. Client
interfaces are crafted along the C++ and Java APIs of the ODMG 3.0 standard. While C++ tem-
plates allowed a natural modelling of the array type constructor, the concept of implementation
classes offered by Java turned out a good substitute. During implementation of the engine,
smart pointers as we encountered them in O2 turned out advantageous in terms of efficiency
of programming, runtime efficiency, and flexibility; the latter in particular when it came to an
own implementation of smart pointers during the switch to relational systems. The kernel op-
timizations for multi-dimensional iteration and the dynamic type system could be implemented
elegantly and efficiently using the function pointer idiom.

Object-relational technology, on the other hand, comes with some drawbacks. On model
level, it allows only introduction of new data types, but not of data type constructors. Con-
sequently, all object-relational systems offering array support are constrained to a few hand-
picked, hardwired data types. When it comes to implementation, it has turned out prohibitively
tedious to implement new types and, in particular, optimizations for them – a fact reported by
the object-relational proponents themselves. In the end, the major part of the code that com-
prises, e.g., the rasdaman engine would need to be reimplemented for such an architecture. We
seriously doubt that efficiency would be comparable.

Implementation work reported has been performed between 1995 and 2010 in steps and
with several generations of developers involved. Feasibility of the rasdaman implementation
approach has been proven many times, up to operational installations. For example, the French
National Geographic Institute (IGN-F) maintains, since more than five years, a dozen-Terabyte
airborne image in a stack consisting of (from bottom to top) PostgreSQL, rasdaman, and a servlet
implementing an OGC Web Map Service (WMS). EarthLook is a public accessible demon-
stration site accessible at www.earthlook.org. Query examples drawn from the Earth Sciences
showcase 1-D to 4-D retrieval and processing through the raster query language of the OGC
Web Coverage Processing Service (WCPS) standard [5]. Further, array service stacks using
rasdaman have been implemented for gene expression analysis [26] and human brain imaging
[15]. Hence, the array DBMS architecture and the ramifications of our design decisions for
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efficient implementation are quite well understood, which reinforces validity of our results. To
the best of our knowledge, this research resembles the largest study ever undertaken in terms of
both development and use time (14 years) and project size (around 1.5 million lines of code).

For the future, we plan continue array DBMS research in various aspects. A core issue,
given the advanced state of research in array DBMSs, is development of an array benchmark
which allows to thoroughly compare different implementations, including vendor-specific opti-
mizations. As for rasdaman , one line of research is to investigate further optimizations, such
as OLAP-style preaggregation, where we have encounraging first result [1]. Another thread
is to extend the array concept to general spatio-temporal objects, including point clouds and
triangulated irregular networks (TINs), to name but two. We feel optimistic that the strictly
object-oriented design will aid us in adding features to the rasdaman engine.
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