
Spatio-Temporal Retrieval with RasDaMan

Peter Baumann, Andreas Dehmel, Paula Furtado, Roland Ritsch, Norbert Widmann

FORWISS (Bavarian Research Center for Knowledge-Based Systems)
Orleansstr.34, D-81667 Munich, Germany

Dial-up: voice +49-89-48095-207, fax - 203
E-Mail {baumann,dehmel,furtado,ritsch,widmann}@forwiss.de

Abstract

Database support for multidimensional arrays is
an area of growing importance; a variety of high-
volume applications such as spatio-temporal data
management and statistics/OLAP become focus
of academic and market interest.
RasDaMan is a domain-independent array
database management system with server-based
query optimization and evaluation. The system is
fully operational and being used in international
projects. We will demonstrate spatio-temporal
retrieval using the rView visual query client.
Examples will encompass 1-D time series, 2-D
images, 3-D and 4-D voxel data. The real-life
data sets used stem from life sciences, geo
sciences, numerical simulation, and climate
research.

1. System Overview

Arrays of arbitrary size and dimension, so-called
Multidimensional Discrete Data (MDD), appear in a
multitude of database applications; natural sciences,
OLAP and statistics, and multimedia comprise but a few
representative fields. It is estimated that the larger part of
digital data stored worldwide belongs to the MDD
category. Nevertheless, MDD are not comprehensively
understood by database research as of today, although

important research has been accomplished in several
subfields. In practice, BLOBs still prevail in multimedia,
while statistics and OLAP have developed their own
methods of MDD management.

The RasDaMan array DBMS has been developed by
FORWISS in the course of an international project partly
sponsored by the European Commission [Bau97]. The
overall goal of RasDaMan is to provide classic database
services in a domain-independent way on MDD
structures. Based on a formal algebraic framework
[Bau99], RasDaMan offers a query language [Bau98a],
which extends SQL-92 [ISO92] with declarative MDD
operators, and an ODMG 2.0 conformant programming
interface [Cat96]. Server-based query evaluation provides
several optimization techniques and a specialized storage
manager. The latter combines MDD tiling with spatial
indexing and compression whereby an administration
interface allows to change default strategies for
application-driven database tuning [Fur99]. Array sets
resulting from queries are delivered in the client’s main
memory format or in some a data exchange format as
selected by the application.

Research on array data management in DBMSs
usually focuses on particular system components, such as
storage of multidimensional data [Sar94], or query
language [Mar97]. RasDaMan, on the other hand, is a
fully implemented and operational generic array DBMSs.
This makes it a unique opportunity to study all aspects of
multidimensional data management in a holistic way,
thereby augmenting focused research done elsewhere.

In [Bau98b] RasDaMan has been demonstrated in
combination with the object-oriented database system O2
[Ban92]. This time, RasDaMan will be coupled with
Oracle, thereby showing the interoperability capabilities
with both relational and object-oriented systems and
giving insight into the interworking of RasDaMan and
Oracle. Additionally, advanced physical storage tuning,
including various array decomposition techniques and
transparent compression, will be demonstrated the first
time.

Permission to copy without fee all or part of this material
is granted provided that the copies are not made or
distributed for direct commercial advantage, the VLDB
copyright notice and the title of the publication and its
date appear, and notice is given that copying is by
permission of the Very Large Data Base Endowment. To
copy otherwise, or to republish, requires a fee and/or
special permission from the Endowment
Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

1.1 Conceptual Model

The conceptual model of RasDaMan centers around the
notion of an n-D array (in the programming language
sense) which can be of any dimension, size, and array cell
type (for the C++ binding, this means that valid C++
types or structs are admissible). Each dimension’s lower
and upper bound can be fixed at data definition time, or
can be left variable. Type definition is done through the
RasDaMan definition language, RasDL, which is based
on ODMG ODL.

The RasDaMan query language, RasQL, consists of
MDD primitives embedded in ODMG’s OQL; as usual, a
SELECT statement returns a homogeneous set of items.
Array expressions can be used in the SELECT part to
modify the selected elements, and they can be used in the
WHERE part to search for arrays with particular
properties. The expressive power of RasQL allows to state
operations up to the complexity of the Discrete Fourier
transformation [Bun93]. Recursive operations (such as
determinants or matrix inversion) are not supported to
obtain a language which is safe in evaluation.
Nevertheless, this enables a wide range of statistical,
imaging, and OLAP operations. The underlying array
algebra is described in detail in [Bau99].

1.2 Storage Management

RasDaMan employs a storage structure for MDD which is
based on the subdivision of an MDD object into arbitrary
tiles, i.e., possibly non-aligned subarrays, combined with
a spatial index to accelerate access to the tile subset
affected by a query. A choice of different tiling strategies
under control of the database administrator or an
application programmer serves to accommodate different
query patterns. Support of arbitrary tiling is one of the
distinguishing features of RasDaMan. The tiling strategies
supported lead to performance increases of access
operations to MDD objects, as they allow tuning of tiling
to different types of retrieval. The following tiling
strategies have been implemented: directional tiling which
optimizes accesses along given dimension categories,
tiling according to areas of interest which optimizes
access to a given set of query regions, and statistical tiling
which optimizes access given the statistics of access to an
MDD object. These reflect different application
requirements regarding types of access. The underlying
tiling algorithms minimize the amount of data read for the
most frequent accesses, thus reducing execution time. In
[Fur99] these algorithms are described and performance
comparisons against other tiling strategies are presented
which are based on measurements on 3-D data cubes with
different tile sizes. Average performance increases of
200% have been observed compared to the performance
of regular tiling.

1.3 Query Processing

Demands on Array Query Processing (AQP) differ
essentially from the ones on standard Relational Query
Processing.(RQP): With RQP, tuples are very small
compared to relation size and operations on single tuples
(e.g., string comparison) are very inexpensive wrt. CPU
costs. The main effort has to be spent on processing large
sets of tuples. In contrast, single MDD objects already can
reach the scale of Gigabytes, and MDD operations, such
as consolidation in OLAP datacubes, become extremely
complex and time consuming.

On the logical level, RasDaMan applies a specialized
rewriting heuristic based on about 150 algebraic
transformation rules derived from MDD operations,
relational operations, and their combinations to construct
optimized expressions wrt. evaluation performance and
memory usage. Examples for such rules are "pull out
disjunctions while aggregating cell values of an MDD
using logical or" and "push down geometric operations to
the expressions’ leaves". The latter rule ensures that just
the minimal amount of data necessary to compute the
result of the query branch is read from the storage
manager. Further, the query tree is searched for common
MDD subexpressions. Beyond conventional
subexpression matching, the spatial domains are checked
for overlapping regions which have to be loaded and
computed only once. The choice of physical algorithms,
finally, is driven by indexing and tiling information. For
instance, if an operation does not prescribe any particular
tile inspection sequence, iteration order will be chosen
corresponding to storage order. The tile-based execution
strategy pipelines the execution process on the level of
tiles whenever possible in order to reduce memory
requirements for intermediate results and to obtain a high
pipelining degree. Due to associativity and commutativity
of most cell operations, there is a huge potential for
parallelization which will be incorporated in future
versions of RasDaMan.

1.4 Architecture

The RasDaMan API consists of RasQL and the C++
Raster Library (RasLib) which serves for the integration
of the MDD type into the C++ language. To make MDD
persistent, RasDaMan follows the ODMG-2.0 standard
through providing a smart pointer which behaves like a
normal C++ pointer capable of managing transient and
persistent data in a transparent way.

The cross-platform client-server architecture is
realized through standard remote procedure calls. The
server architecture consists of the modules Query
Evaluator, Index Manager, Catalog Manager, and Tile
Manager. The Query Evaluator parses the query and
builds an operator based query tree. Then query
optimization takes place in two steps. First, algebraic
query rewriting is done, then physical optimization based
on tiling and clustering information takes place. The

Query Evaluator is tile-based, operations on MDD items
are decomposed into operations on tiles. To identify the
tiles involved in a query and to calculate the costs to
retrieve them, the Index Manager is consulted. The
Catalog Manager takes care of schema information
specified through RasDL. The final execution plan is
evaluated by retrieving tile sets from the Tile Manager
and applying elementary image operations, e.g. spatial or
induced operations, on them. An interface layer between
RasDaMan modules and the base DBMS, the Storage
Management Interface, is responsible for the storage and
access to all data in persistent storage. This prepares
RasDaMan for easy portability between different base
DBMSs and storage systems. RasDaMan is implemented
in C++ and runs under several Unix versions as well as
Windows NT; heterogeneous client/server environments
are supported. The server interfaces with the object-
oriented DBMS O2 and with relational systems.

2 Demonstration

We will demonstrate RasDaMan using the visual frontend
rView, a C++ RasDaMan client, to interactively submit
RasQL queries and display result sets containing 1-D to 3-
D data. The system will run in a client/server environment
with a Unix server and a Unix or Windows NT client.
Demonstration will rely on the following data sets: 1-D
time series, a 2-D Digital Elevation Model (DEM), 3-D
volume CAT scans, a 3-D movie clip, the 3-D Visible
Human [Nat90], a 3-D thermal flow simulation result, and
a 4-D climate data set. If Internet access can be provided,
wide-area queries to our Munich server will be shown.

2.1 RasQL Operations Overview

Demonstration will start by showing sample retrieval,
thereby introducing basic RasQL concepts. Queries will
encompass both search and array manipulation
operations; examples will range from 1-D to 4-D,
showing in particular how cross-dimensional queries
work.

2.2 Effectivity of query optimization

Next, selected queries will serve to demonstrate the effect
of several algebraic rewriting rules. This allows to discuss
how they contribute to overall performance.

2.3 Tiling strategies

Finally, implications of physical data organization will be
presented. To this end, a sample 3-D volume tomogram
and an animation sequence is stored with different tiling
strategies. A particular administrator tool allows to
visually inspect the tiling of MDD instances. Queries such
as sub-cube extraction and cuts along the three different
space axes clearly indicate strengths and weaknesses of
particular tiling schemata. Various tiling strategies should

be offered as a database tuning tool similar to indexes on
tables in relational DBMS for optimal query performance.

References

[Ban92] F. Bancilhon, C. Delobel, P. Kanellakis: Building
an Object-Oriented Database System. Morgan
Kaufmann Publishers, San Mateo, CA, 1992.

[Bau97] P. Baumann, P. Furtado, R. Ritsch, N. Widmann:
Geo/Environmental and Medical Data Management in
the RasDaMan System. Proc. of the VLDB’97
Conference, Athens, Greece, 1997.

[Bau98a] P. Baumann: The RasDaMan Array Algebra.
RasDaMan Technical Report for012, FORWISS,
1998.

[Bau98b] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch,
N. Widmann: The Multidimensional Database System
RasDaMan. Proc. ACM SIGMOD’98, Seattle, USA
1998, pp. 575 - 577.

[Bau99] P. Baumann: An Algebra for Domain-
Independent Multidimensional Array Management in
Databases. RasDaMan Technical Report for016, 1999.

[Bun93] P. Buneman: The Discrete Fourier Transform as
a Database Query. Technical Report MS-CIS-93-
37/L&C 60, University of Pennsylvania, 1993.

[Cat96] R. Cattell: The Object Database Standard:
ODMG-93. Morgan Kaufmann Publishers, 1996.

[Fur99] P. Furtado, P. Baumann: Storage of
Multidimensional Arrays Based on Arbitrary Tiling.
Proc. ICDE’99, Sidney - Australia 1999.

[ISO92] The International Organization for
Standardization (ISO): Database Language SQL. ISO
9075, 1992(E), 1992.

[Mar97] A. P. Marathe, K. Salem: A Language for
Manipulating Arrays. Proc. of VLDB’97 Conference,
Athens, Greece, 1997.

[Nat90] National Library of Medicine (US) Board of
Regents: Electronic Imaging: Report of the Board of
Regents. US Department of Health and Human
Services, Public Health Service, National Institutes of
Health, NIH Publication 90-2197, 1990.

[Sar94] S. Sarawagi, M. Stonebraker: Efficient
Organization of Large Multidimensional Arrays. Tenth
Int. Conf on Data Engineering, pp. 328-336, Houston,
Feb. 1994.

Figure 1: Sample MDD visualization using rView. The image to the top left shows a volume rendering of a
section of the Visible Human obtained with the query displayed to its right. Top right and background images
visualize a climate data set and a DEM of the Grand Canyon, respectively.

Figure 2: Visualization of different tiling strategies of a3-D movie sequence with rView: regular tiling (left) and
areas of interest resulting in nonaligned tiles (right).

