
Databases – © P. Baumann

Database Organization: 

Tables on Disk

Garcia−Molina, Ullman, Widom

Ramakrishnan/Gehrke Ch. 9

“Yea, from the table of my memory
I’ll wipe away all trivial fond records.”

-- Shakespeare, Hamlet



Databases – © P. Baumann

Roadmap

 Disks

 Files

 Records

 Storage management

 Catalogs

 Summary



Databases – © P. Baumann

Why Not Everything in Main Memory?

 Costs too much

• [Rama/Gehrke] $1000 will buy you either 128MB of RAM or 7.5GB of disk 

• Today: 80 EUR will buy you either 4 GB of RAM or 1 TB of disk

• …but today we have multi-Terabyte databases!

 Main memory is volatile

• want data to be saved between runs  (obviously!)

 Typical storage hierarchy:

• Main memory (RAM) for currently used data

• Disk for main database (secondary storage)

• Tapes for archiving older versions of data (tertiary storage)



Databases – © P. Baumann

A Typical Computer



Databases – © P. Baumann

Storage Capacity

 Absolute times as of 2003, but ratios still ~ same



Databases – © P. Baumann

Storage Cost

 Again, absolute values as of 2003, but ratios still ~ same



Databases – © P. Baumann

Storage Hierarchies

Magnetic tapes

RAID

Disks, SSD, …

Main  memory  

Primary 

memory

Secondary 

memory

Tertiary 

memory

Cache

Larger

Cheaper

Slower

Storage

capacity



Databases – © P. Baumann

Numbers

source

http://carlos.bueno.org/2014/11/cache.html


Databases – © P. Baumann

Caching & Virtual Memory

 Cache: Fast memory, holding frequently used parts of a slower, larger 

memory

• small (L1) cache holds a few kilobytes of the memory "most recently used" by the 

processor

• Most operating systems keep most recently used "pages" of memory in main memory, 

put the rest on disk

 Virtual memory

• programs don't know whether accessing main memory or a page on secondary 

memory page (most operating systems)

 Database systems usually take explicit control over 2ndary memory access



Databases – © P. Baumann

The Miracle Called "Hard Disk"

 Disk head contains magnet, hovering over spinning platter

 flight height: 10-20 nm

 (x 5,000 gives one hair!)

 relative placement

of pages on disk 

has major impact 

on DBMS performance!



Databases – © P. Baumann

Components of a Disk 

 platters spin

 arm assembly moves in or out 

 to position head on desired track

 Tracks under heads = a cylinder

(imaginary!)

 Sector size = N * block size 

(fixed)

 ...typical numbers?



Databases – © P. Baumann

Nearline (Tertiary) Storage

 Usually tape 

• Reel, today: cartridge

• Capacity 10...220 GB per tape

 Tape robots 

• HSM system = 

Hierarchical storage management 

system

• Capacity several Petabytes



Databases – © P. Baumann

Roadmap

 Disks

 Files

 Records

 Storage management

 Catalogs

 Summary



Databases – © P. Baumann

Table of Tuples  Files of Records

 File = collection of pages, each containing a collection of records

 Operations:

• find record by id

• scan through all records (possibly with predicate)

• insert/delete/modify record

 I/O operates on pages / blocks   higher levels operate on records

 Heap File: Simplest file structure, records in no particular order

• many implementation alternatives



Databases – © P. Baumann

Heap File Implemented as a List 

 /data/.../students.dbf:

 Heap File name stored in system catalog 

 page = 2 `pointers’ + records

Header

Page

Data

Page

Data

Page

Data

Page

Data

Page

Data

Page

Data

Page
Pages with

Free Space

Full Pages…

…



Databases – © P. Baumann

Heap File Using a Page Directory

 directory = collection of pages

• linked list, hash table, …

 Optimization: 

add # free bytes on page

Data

Page 1

Data

Page 2

Data

Page N

Header

Page

directory



Databases – © P. Baumann

Roadmap

 Disks

 Files

 Records

 Storage management

 Catalogs

 Summary



Databases – © P. Baumann

Record Formats:  Fixed Length

 Information about field types same for all records in a file; 

stored in system catalogs

 Finding i’th field does not require scan of record

Base address (B)

L1 L2 L3 L4

F1 F2 F3 F4

Address = B+L1+L2



Databases – © P. Baumann

Record Formats: Variable Length

 Two alternative formats (# fields fixed):

4 $ $ $ $

Field

Count

Fields Delimited by Special Symbols (eg, '\0')

F1                    F2                       F3                        F4

Variant 1:

delimiters

F1             F2             F3             F4

Array of Field Offsets

Variant 2:

offset ptrs

 Var2: direct access to i’th field; efficient storage of nulls; small directory 

overhead



Databases – © P. Baumann

Page Formats: Fixed Length Records

 Record id = <page id, slot #>

 In first alternative, moving records for free space mgmnt changes rid

• may not be acceptable

Slot 1
Slot 2

Slot N

. . .

N

PACKED

Free

Space

number 

of records

. . .

M10. . .

M  ...    3  2  1

UNPACKED, BITMAP

Slot 1
Slot 2

Slot N

Slot M

11

number

of slots



Databases – © P. Baumann

Page Formats: Variable Length Records

Indirection can move records on page without changing rid

attractive for fixed-length records too

Page i
Rid = (i,N)

Rid = (i,2)

Rid = (i,1)

Pointer

to start

of free

space
SLOT DIRECTORY

N . . .            2         1

20 16 24 N

# slots



Databases – © P. Baumann

Roadmap

 Disks

 Files

 Records

 Storage management

 Catalogs

 Summary



Databases – © P. Baumann

Disk Space Management

 Persistent Storage Manager

• Lowest layer of DBMS software, manages space on disk

• Higher levels call this to allocate/de-allocate page, read/write page, …

 Optimization: allocate sequence of pages (table!) sequentially on disk!  

• Allocate n pages at once

 DBMS maintains RAM cache: Buffer manager 



Databases – © P. Baumann

DBMS Buffer Management

Table of 

<frame#, pageid>

(plus more )

MAIN MEMORY

DISK

disk page

free frame

page requests from higher layers

BUFFER POOL

choice of frame dictated

by replacement policyFile system



Databases – © P. Baumann

When a Page is Requested ...

 If requested page is not in pool:

• Choose a frame for replacement

• If  frame is dirty, write it to disk

• Read requested page into chosen frame

 Pin page and return its address 

 If possible, arrange blocks sequentially on disk 

• minimize seek and rotational delay

 For sequential scan (access predictable!), pre-fetching is a big win

NB: 

'page' 'block'



Databases – © P. Baumann

More on Buffer Management

 Page requestor must unpin it 

& indicate whether page has been modified 

• dirty bit

 Page in pool may be requested many times

• pin count: page is candidate for replacement iff pin count == 0

 CC & recovery: additional I/O when replacing frame

• Write-Ahead Log protocol



Databases – © P. Baumann

Buffer Replacement Policy

 Frame is chosen for replacement by a replacement policy:

• Least-recently-used (LRU), Clock, MRU etc.

 Policy can have big impact on # of I/O’s; depends on the access pattern

 Sequential flooding: 

Nasty situation caused by LRU + repeated sequential scans

• # buffer frames < # pages in file means: each page request causes an I/O

• MRU much better in this situation (but not in all, of course)



Databases – © P. Baumann

Roadmap

 Disks

 Files

 Records

 Storage management

 Catalogs

 Summary



Databases – © P. Baumann

 For each relation:

• name, file name, file structure (e.g., Heap file)

• attribute name and type, for each attribute

• index name, for each index

• integrity constraints

 For each index:

• structure (e.g., B+ tree) and search key fields

 For each view:

• view name and definition

 Plus statistics, authorization, buffer pool size, etc.

System Catalogs

Catalogs themselves 
stored as relations!



30340151   Big Data & Cloud Computing (P. Baumann)

Sample Catalog Table

attr_name rel_name type position 

attr_name Attribute_Cat string 1 

rel_name Attribute_Cat string 2 

type Attribute_Cat string 3 

position Attribute_Cat integer 4 

sid Students string  1 

name Students string 2 

login Students string 3 

age Students integer 4 

gpa Students real 5 

fid Faculty string 1 

fname Faculty string 2 

sal Faculty real 3 

 

 

Attribute_Cat:

1st entry? 

Key(s)?



Databases – © P. Baumann

Roadmap

 Disks

 Files

 Records

 Storage management

 Catalogs

 Summary



Databases – © P. Baumann

DBMS vs. OS File System

 Differences in OS support: portability issues

 Some limitations

• e.g., files can’t span disks

 Buffer management in DBMS requires ability to:

• pin page in buffer pool, force page to disk (CC & recovery!)

• adjust replacement policy + pre-fetch pages 

based on access patterns in typical DB operations

OS does disk space & buffer mgmt: 

why not let OS manage these tasks?



Databases – © P. Baumann

Databases & Disk: Practitioner's Hints

 Choose file system wisely: ext3, ext4, xfs, ...

• Many discussions

 Place redo logs (and Oracle control files) on separate partitions

• If possible, same for index (higher traffic!)

 Fastest disks for /tmp, cache files, log, and other high-traffic dirs

 Big RAM is never wrong

 Still money left? RAID!

SSD, NVME, ...

https://www.ibm.com/support/knowledgecenter/en/linuxonibm/performance/tuneforsybase/filesystem.htm


Databases – © P. Baumann

Summary

 Disks provide cheap, non-volatile storage

• Random access, but cost depends on location of page on disk

• important to arrange data sequentially to minimize seek and rotation delays

 Buffer manager brings pages into RAM

• Page stays in RAM until released by requestor

• Written to disk when frame chosen for replacement 

(which is sometime after requestor releases the page)

• Choice of frame to replace based on replacement policy

• Tries to pre-fetch several pages at a time



Databases – © P. Baumann

Summary (Contd.)

 DBMS vs. OS File Support: DBMS needs features not found in many OS’s

• forcing page to disk

• controlling order of page writes to disk

• files spanning disks

• control pre-fetching + page replacement policy based on predictable access patterns, 

etc.

 Variable length record format with field offset directory 

• supports direct access to i’th field, null values

 Slotted page format

• supports variable length records, allows records to move on page



Databases – © P. Baumann

Summary (Contd.)

 File layer 

• keeps track of pages in file + supports abstraction of "collection of records"

• Pages with free space identified via linked list or directory structure

• similar to how pages in file are kept track of

 Indexes

• support efficient retrieval of records based on the values in some fields

 Catalog relations 

• store information about relations, indexes and views

• Information that is common to all records in a given collection


