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Abstract. Intra-query parallelism is a well-established mechanism for achieving 
high performance in (object-) relational database systems. However, the meth-
ods have yet not been applied to the upcoming field of multidimensional array 
databases. Specific properties of multidimensional array data require new paral-
lel algorithms. This paper presents a number of new techniques for parallelizing 
queries in multidimensional array database management systems. It discusses 
their implementation in the RasDaMan DBMS, the first DBMS for generic mul-
tidimensional array data. The efficiency of the techniques presented is demon-
strated using typical queries on large multidimensional data volumes. 

1   Introduction 

Arrays of arbitrary size and dimensionality appear in a large variety of database appli-
cation fields, e.g., medical imaging, geographic information systems [7], scientific 
simulations, etc. Recently, integration of an application domain-independent and of a 
generic type constructor for such Multidimensional Discrete Data (MDD) into Data-
base Management Systems (DBMS) has received growing attention. Current scientific 
contributions in this area mainly focus on MDD algebra and specialized storage archi-
tectures [1] [2] [3]. 

Since MDD objects may have a magnitude of several MB and much more and, 
compared to scalar values, operations on these values can be very complex, their effi-
cient evaluation becomes a critical factor for the overall query response time. Beyond 
query optimization, parallel query processing is the most promising technique to speed 
up complex operations on large data volumes.  

One of the outcomes of the predecessor project of ESTEDI (http://www.estedi.org), 
called RasDaMan (funded by the European Commission under grant no. 20073), in 
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which the Array DBMS RasDaMan [2] has been developed, was the awareness that 
most queries on multidimensional array data are in fact CPU-bound [10]. Therefore, 
one major research issue of the succeeding project ESTEDI is the parallel processing 
of queries which is the topic of this paper. Furthermore, ESTEDI, an initiative of 
European software vendors and supercomputing centers, will establish an European 
standard for the storage and retrieval of multidimensional high-performance comput-
ing (HPC) data. It addresses a main technical obstacle, the delivery bottleneck of large 
HPC results to the users, by augmenting high-volume data generators with a flexible 
data management and extraction tool for multidimensional array data. 

This paper discusses the suitability of concepts developed in parallel relational 
DBMS for intra-query parallelism in array DBMS. Special properties of array data, 
e.g. the size of one single data object combined with expensive cell operations require 
adapted algorithms for parallel processing. Suitable concepts found in relational 
DBMS were implemented and evaluated in the RasDaMan Array DBMS. 

The remainder of this paper is organized as follows. Section 2 briefly describes the 
multidimensional data model, the multidimensional query language RasQL and the 
query execution in our example Array DBMS RasDaMan. In section 3, the architec-
ture of the parallel RasDaMan server and the parallelizer module, which rewrites the 
query tree in order to distribute different sections of the tree to different processes, 
will be presented. The performance of the parallel implementation will be discussed, 
using a running example in section 4. We finally compare parallel algorithms of rela-
tional systems to our implemented techniques in order to evaluate their suitability 
regarding array data. Section 5 contains our conclusions and suggestions for future 
work.  

2  Processing Multidimensional Data: the Array DBMS RasDaMan 

In this section, we will describe a multidimensional data model, a multidimensional 
query language and the execution of multidimensional queries. As the parallel query 
processing was implemented in RasDaMan [2], we will first introduce the RasDaMan 
data model, the RasQL query language and its internal query tree and query execution. 
Nevertheless, the concepts for parallel query processing on array DBMS described in 
section 3 can be applied to other array DBMS as well. 

2.1   Logical Data Model and Query Language 

The fundamental concept of the RasDaMan data model is Multidimensional Discrete 
Data (MDD). This can be defined as multidimensional array with (1) an arbitrary 
dimensionality, (2) a spatial domain, specified via lower bounds and upper bounds for 
each dimension, (3) a specific cell base type, consisting of a single scalar value or a 
complex type structure. An MDD collection holds an unordered set of MDD with the 
same dimensionality, spatial domain and cell base type. 

In Fig. 2 (left top) we see a 3D MDD (data based on climate simulation model, pro-
vided by Max-Planck Institute for Meteorology, one of the application partners in the 



the ESTEDI project). The dimensions specify longitude, latitude and time (months). 
The spatial domain is [0:63, 0:127, 0:119], i.e. the 3-dimensional array includes 64 x 
128 x 120 cells. The cell values of scalar type double have a range of about 200 (dark 
regions near the poles) to 320 (bright regions near the equator), and define average 
temperatures on the earth surface in degrees Kelvin for 120 months. In Fig. 2 (left 
bottom), a collection of five MDD (each representing a decade of average temperature 
values) with the same dimensionality, spatial domain and cell type is illustrated. Inter-
nally each MDD is identified by a unique object identification number, here 28 to 32.  

In order to invoke operations on array data and specify the multidimensional inter-
val to be accessed, RasDaMan provides a query language RasQL which is derived 
from standard SQL. The simplified structure of such a RasQL query is  

SELECT <array operation>
FROM collection 1, ..., collection n
WHERE <condition operation>

Array operations used in the select and where clause of the statement can be  
1. geometric operations: the trimming operation specifies a sub-array with the same 

dimensionality, e.g. in our example [0:63,0:127,0:11] for the first 12 months. A 
section operation reduces the dimensionality by one, i.e. the data is projected to a 
hyperplane.  

2. induced operations: operations which are defined on the base cell type are also 
defined on multidimensional arrays, e.g. the sum of two MDD with cell base type 
double. 

3. aggregation operations: an MDD is reduced to one single scalar value. Operations 
of this class are quantifiers, maximum, minimum, average, etc.  

The primary benefit of such a complex query language is the minimization of data 
transmission between database server and client. Areas of interest can be specified 
with geometric operators, and complex calculations can be executed on the server 
side, only transferring the result to the client instead of entire objects.  A more detailed 
specification of the RasDaMan data model and the RasQL query language can be 
found in [2] and [3]. 

2.2   Query Execution: the RasDaMan Query Tree 

Internally, the RasDaMan server builds up a query tree to process the query (Fig. 1). 
The query execution follows the open-next-close protocol (iterator concept) which is 
well known in database technology. First, the method open() is invoked on the root 
node α. In a post-order traversal, the method invocation is propagated through the 
query tree while initializing resources. Then, method next() is invoked repeatedly 
on the root node which again is propagated in a post-order traversal through the entire 
tree. Each time the method completes, this bottom-up process returns one element of 
the result collection. At the end, method close() is called to clean up resources 
allocated during execution.  
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Fig. 1. Structure of a query tree for a RasQL statement (left).  
Architecture of the parallel RasDaMan server (right). 

The iterator nodes of the query tree using the open-next-close protocol in Fig. 1 are  
1. cross product �, representing the FROM clause of the RasQL statement. It delivers 

the cross product of all multidimensional objects of all referenced collections. 
2. selection σ, representing the WHERE condition of the RasQL statement. The con-

dition tree consists of multidimensional operations. A next() returns the next 
multidimensional data object for which the condition tree evaluates true. 

3. application α, representing the SELECT operation of the RasQL statement. The 
operation tree executes array operations on the resulting multidimensional data.  

It should be pointed out that the multidimensional data is not loaded at the bottom of 
the query tree (like the relational scan operator) but demand-driven during the evalua-
tion of the condition tree, evaluated by the selection σ, and the operation tree, evalu-
ated by the application α. Therefore, these operations of the query tree are the most 
expensive ones, because on the one hand the data loading is done there, and on the 
other hand the operation and condition itself are trees, which represent expensive 
array operations on the multidimensional data. Details on query optimization and 
execution in array DBMS can be found in [10]. 

3 Parallel Query Processing 

Parallel query processing is a well established mechanism in relational DBMS [4] [6] 
[9] [11]. Different hardware architectures have been investigated regarding parallel-
ism, i.e. multiprocessor computer (shared everything, symmetric multiprocessing, 
SMP) and shared disc / shared nothing systems (e.g. workstation cluster). Considering 
the facts that queries on array data are in most cases highly CPU-bound [10] and in-
termediate results can reach a size of several MB and more, we came to the conclusion 
that shared everything architectures are more appropriate for a parallel array DBMS, 
as performance will decrease with the transmission of large intermediate results over a 
network. Nevertheless, the architecture and the communication protocol used by the 
parallel RasDaMan server, which is LAM-MPI (http://www.lam-mpi.org), is not lim-
ited to any specific hardware architecture. LAM (Local Area Multicomputer) is an 



MPI (Message Passing Interface, http://www.mcs.anl.gov/mpi) programming envi-
ronment and development system for heterogeneous computers within a network. 
With LAM, a dedicated cluster or an existing network computing infrastructure can 
act as one parallel computer solving one problem.  

Furthermore, parallel processing of data can be classified into data parallelism, 
where different data sets are handled by different processes, and pipeline parallelism, 
where we can utilize a producer-consumer relationship within the query tree (a con-
sumer executes operations on a data stream which is still being generated by the pro-
ducer process). In this section we will describe the implemented data parallelism; a 
further discussion of the adaptation of parallel techniques in relational DBMS (e.g. 
pipeline parallelism) to Array DBMS will follow in section 4. 

3.1   Parallel Architecture 

The overall process structure of the parallel RasDaMan array DBMS is shown in Fig. 
1. Several types of client applications currently exist. The most important is rView, a 
visualization application provided with RasDaMan [5]. Furthermore, several graphical 
front-ends for the visualization of data were implemented in the ESTEDI project, e.g.,  
in the field of gene expression simulation, meteorological simulations, satellite image 
retrieval and information extraction, flow modeling of chemical reactors, etc. The 
clients are connected to the RasDaMan Manager using the RPC1 or HTTP2 protocol.  

The RasDaMan manager distributes client request to different RasDaMan server 
processes which typically run on different computers. On this level, inter-query paral-
lelism (multi-user functionality) is achieved: a query sent by the client application is 
transferred from the manager to a server process that is currently available. 

Each RasDaMan server itself forks several internal processes at start-up time to re-
alize intra-query parallelism. One designated process is responsible for the client-
server communication and the distribution of the workload, all other processes are 
internal and therefore not visible from the client. The internal server processes have 
access to a relational DBMS which acts as a storage and transaction manager for the 
multidimensional array data (dotted lines in Fig. 1). At the time of writing, supported 
relational DBMS are Oracle, IBM DB2 and Informix. 

As mentioned above, distributed processing of RasQL queries requires different 
processes and communication between them, e.g. to exchange requests or intermediate 
results. In order to avoid performance problems while evaluating a query, the proc-
esses do not fork during query execution but at start-up time of a RasDaMan server. 
So whenever a RasDaMan server is started, we create several internal server processes 
which reside in memory and are waiting for requests. We run 2 processes for admini-
stration tasks and an arbitrary number of processes for the computational work. In 
order to utilize CPU resources, but avoid unnecessary swapping of processes, we 
recommend n+2 processes with n being the number of processors of an SMP com-
puter, resp. the number of nodes in a workstation cluster. 
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The parallel RasDaMan server distinguishes 3 classes of processes, where each 
process class reflects a part of the overall query tree (Fig. 1) that can be executed 
independently from other processes:  
1. RasDaMan master server: this process is responsible for the server client communi-

cation via network, e.g., it connects the RasDaMan server to the rView client appli-
cation using the RPC or HTTP protocol. It distributes controlling messages, the 
queries and therefore the workload to all other (internal) server processes. Query 
results are collected from the internal processes and transmitted to the client.  

2. Internal tuple server: this process generates the cross-product of all MDD involved 
in the query. This is required to ensure a central administration of the multidimen-
sional data objects for all processes. Upon receiving a request for the next data 
element, the server process accesses the underlying relational DBMS (only object 
identifiers are read not the whole objects), and sends the next tuple of object identi-
fiers to the calling process. 

3. Internal worker processes: a number of processes which do the actual query proc-
essing. Receiving a data identifier from the tuple server (invocation of next()) 
these processes evaluate the condition tree and the operation tree on this (tuple of) 
MDD.  

3.2 Parallel Query Tree 

The classification of the internal server processes presented above corresponds with 
the structure of the (parallel) query tree. In relational DBMS the optimization and 
parallelization phases, which both restructure the query tree, often show interferences. 
The optimization of a sequential execution plan contradicts an optimal parallel execu-
tion plan. Therefore, optimization and parallelization phases are often combined in 
one single module [8]. In RasDaMan, the optimization of the query tree does not con-
flict with parallel optimization, as optimization is primarily performed on the array 
operations of the operation and condition tree while the parallelizer works on the 
iterator nodes, so the parallelization module is invoked after the optimization phase.  

The RasDaMan parallelization module works as follows: the algorithm identifies 
cross product iterator nodes in the query tree and inserts a pair of send/receive3 nodes 
above it. The send/receive nodes encapsulate the transmission of requests (query exe-
cution protocol) and intermediate results between the internal server processes, using 
the MPI protocol. On the top of the query tree, the algorithm inserts another pair of 
send/receive nodes. This is necessary to designate one process as the master server 
process which also handles the server-client communication. It should be noted that 
both ‘expensive’ nodes, the application and the selection nodes which evaluate the 
array operations, are executed within one process, instead of being split into two proc-
esses. We decided not to compute the application node and the selection node on 
different processes because this would avoid the usage of transient multidimensional 
data, i.e. memory-cached objects of the data read from the relational DBMS. It is very 
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typical to execute selection and application operation on the same sub-arrays of data, 
therefore RasDaMan caches intermediate results within a query. 
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Fig. 2. 3-dimensional MDD (left top). Collection of five MDD (left bottom). 
Parallel query tree (right). 

The algorithm splits the query tree into several sections which are interconnected by 
pairs of send/receive nodes. Fig. 2 illustrates an example of a query tree which was 
prepared for parallel query processing by the parallelizer module. The query tree is 
split into three parts which are processed by the different process classes presented 
above. The master process only holds one single receive node on the top of the query 
tree. It distributes the query execution, i.e. the open-next-close iterator concept, top-
down in the query tree to the internal worker processes and collects the query results 
returned. The complete result is then encapsulated in a transfer structure and transmit-
ted to the client. 

Application and selection nodes of the query tree represent the expensive opera-
tions performed on the array data. This computational workload is distributed between 
several worker processes. Each internal worker process executes the query tree with 
the upper send node as its root node. Whenever it receives a next() request from the 
master process via MPI, it sends a next request down the query tree to the internal 
tuple server process and receives the MDD identifiers on which the operations are 
then evaluated. The resulting data is transmitted to the master which collects all results 
and transmits them to the client. 

As mentioned above, the tuple server process executes the query tree beginning at 
the lower send node. It delivers the next valid identifier for a tuple of MDD, accessing 
the referenced collections. With this concept, a central allocation of MDD tuples to 
the worker processes is assured. Furthermore, this dynamic allocation of data identifi-
ers to the worker processes using the iterator concept prevents data skew. 



4 Performance and Evaluation 

In order to evaluate the speed-up of the parallel RasDaMan server, we chose typical 
RasQL queries on 2-dimensional and 3-dimensional data. We will first give a detailed 
example of a test run, describing the test data, the RasQL query, the internal query 
execution and the intermediate results. Following the running example, parameters 
influencing the speed-up will be discussed in detail. Finally, the implemented tech-
niques will be compared to techniques used for relational DBMS.  

4.1   Running Example 

Our example test scenario runs on a collection containing 60 3D MDD. The data was 
provided by the Max-Planck Institute for Meteorology (partner in the ESTEDI pro-
ject). Each 3D cube represents temperature values in a specific height above sea level 
in degrees Kelvin for 10 years (120 months) and was calculated in meteorological 
simulations (see Fig. 2, left). The spatial domain of a MDD is [0:63,0:127,0:119], the 
base type is float; the size of one single MDD is 4 MB, the size of the entire collection 
is 240 MB. 

The tests were performed on a SUN Ultra 250 with 2 UltraSPARC II CPUs running 
at 400MHz, approximately 1.1 GB of main memory and 100 GB of hard disc capac-
ity. The relational DBMS used was Oracle 8.1.6, the parallel RasDaMan server ver-
sion was 3.5. The query to be analyzed is 

SELECT all_cells(a > 200.0)
FROM mpim3d as a

This simple RasQL statement analyzes each MDD of the mpim3d collection and 
returns a boolean value for each MDD, indicating if all cell values of the MDD are 
greater than 200.0 degrees Kelvin. This query is particularly well suited for parallel 
execution because 
1. the application includes an induced operation ‘>’ and an aggregation operation 

‘all_cells’ in the operation tree, which are both CPU-bound,  
2. the collection includes 60 MDD. The data volume is sufficient to let computational 

costs dominate over communication costs and to prevent data skew (as shown 
above, the load is distributed dynamically),  

3. the results which have to be collected by the master server process and transmitted 
to the client are extremely small in this case, i.e. the intermediate result transferred 
from the worker processes to the master process is only one scalar value per MDD. 

For these reasons, this query achieves a speed-up of about 1.91, measured on the 
RasDaMan server4. Typical speed-ups of CPU-bound queries lie within a range of 
1.60 and 1.95 (if the response time of the query is not too short, see below). The time 
required by the different internal process classes is as follows: 
• about 2% for the tuple server. This process does no computational work but cen-

tral administration of the multidimensional objects.  
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• about 4% for the master process. In this case the result to be transmitted to the 
client is very small.  

• 94% for the two worker processes. As the overall execution time is consumed by 
the processing of 60 data objects, the data skew in this example is minimal. 

Fig. 3. Performance of the original server compared to the parallel implementation 

Fig. 3 shows the performance for 10 CPU-bound queries with ascending response 
time. We can identify a threshold in the range of 3 seconds. This threshold distin-
guishes complex queries for which the parallel execution improves performance from 
simple queries where the overhead of parallelizing exceeds the performance im-
provement of a parallel execution. However, a response time less than 3 seconds is not 
typical for the processing array data, so we accept the performance loss for such sim-
ple queries. The more complex a query gets, the more speed-up is achieved. Finally, 
the speed-up of queries having a response time of 30 seconds or more (on the parallel 
RasDaMan server) is determined only by (1) the kind of array operations (I/O vs. 
CPU-bound, see section 2.1), (2) the kind of intermediate results which are transmit-
ted by internal processes, (3) the number of MDD which have to be handled. A small 
number of MDD can lead to data skew. 

The speed-up measured on the client application is typically less than the speed-up 
on the server (Fig. 3, right), especially if the result of the query which has to be trans-
mitted over the network is very large (query 8).  

4.2 Evaluation 

Intra-query parallelism is a well established technique in relational DBMS, but to our 
knowledge it has not yet been examined for multidimensional array DBMS. The spe-
cial properties of array data, such as the enormous size to be processed, the typical 
size of a single data element (MDD), typical queries being CPU-bound etc., require a 
detailed evaluation of the parallel algorithms used in relational database technology 
regarding their suitability for array DBMS: 
1. data parallelism vs. pipeline parallelism 

Data parallelism is an excellent way to speed up queries on MDD. Although multi-
dimensional objects typically have a size of several MB (and more) and the opera-
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tions are CPU-bound, the communication costs for the distribution of the objects 
are small compared to the costs for the array operations. Additionally, we tried to 
minimize communication costs by avoiding to transmit large intermediate results. 
Pipeline parallelism, on the other hand, destroys the utilization of transient multi-
dimensional objects, i.e. cached MDD, and therefore compromises performance.  

2. load balancing and data skew 
Expensive operations on large array data allow for dynamic load balancing. In con-
trast to relational DBMS which often access millions of very small data tuple array 
queries typically access up to several hundred data objects having a size of several 
MB or more. As a consequence, the next MDD to be evaluated can be allocated on 
demand instead of distributing the workload statically as done in relational systems. 
This procedure avoids data skew.  

3. intermediate results 
Transferring intermediate results proves to be more complex in the case of array 
data than it is for relational data. Relational database pages filled with tuples have 
less complexity compared to multidimensional arrays, which consist of complex 
data of dynamic size, cell type etc. The parallelization module was adapted to this 
characteristic. Transmission of complex transient intermediate results was avoided 
where possible. 

Summarizing, the implemented parallelism for array data requires methods different 
from relational techniques, but is well suited for the typical application scenarios 
involving processing of array data and achieves very good performance.  

5 Conclusions 

Parallel processing of multidimensional array data in an array DBMS has not attracted 
any attention in database research so far, although query execution time for processing 
this kind of data is mostly determined by CPU resources. Our goal was the utilization 
of parallel hardware in order to speed up CPU-bound queries, especially very expen-
sive queries with execution times of several minutes or even hours. We designed a 
concept to dynamically split up the computational work on multidimensional objects 
between multiple processes. This required an adaptation and segmentation of the 
query tree to allow different parts of the query tree to be executed by different proc-
esses. In order to achieve good speed-up we minimized process initialization time and  
inter-process communication. 

The concept described was fully implemented in the RasDaMan server kernel. Ex-
tensive test scenarios were performed regarding the structure of the resulting query 
tree and the intermediate results that have to be transmitted.  

Performance measurements prove the validity of our concept. On a two processor 
machine we observed an increase in speed by a factor of up to 1.91 which is an ex-
tremely good result. Further performance measurements on computers with more 
processors and workstation clusters will follow. We expect similar performance im-
provements on these architectures as the concept implemented makes no assumptions 
regarding the number of processes or cluster nodes.  



The implemented data parallelism partitions the data with a granularity of entire 
multidimensional objects. This has the benefit that the concept is straightforward and 
avoids excessive communication overhead which would lead to a loss of performance.  
Summarizing, the parallel RasDaMan server shows extremely good performance, 
especially for computationally expensive queries.  

Future work includes the investigation and the implementation of intra-object paral-
lelism. In order to achieve performance improvements for a query which executes 
array operations on a single MDD, the concept described here is not suitable, as the 
granularity of our data parallelism is a complete multidimensional object. Speeding up 
such queries requires splitting up the MDD and processing the resulting fragments in 
parallel, which has to be investigated further in the future.  
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