
Performance Evaluation of
Multidimensional Array Storage Techniques in Databases

Norbert Widmann1, Peter Baumann
Bavarian Research Centre for Knowledge-Based Systems (FORWISS)

Orleansstr. 34, D-81667 Munich, Germany
fwidmann, baumanng@forwiss.de

Abstract

Storing multidimensional data in databases is an impor-
tant topic both in the industrial and scientific database com-
munities. Arrays are offered as a multidimensional data
structure by most programming languages. Conventional
database systems, however, do not support arrays of arbi-
trary dimensionality and base type. RasDaMan is a DBMS
integrating arrays as a first class data type offering both a
declarative query language and a specialised storage struc-
ture for arrays.

The work presented here evaluates the performance of
queries on multidimensional array data stored in Ras-
DaMan versus storage in a conventional RDBMS. In the
relational system, the data is both mapped to relations and
stored directly as binary data in BLOBs. The queries exe-
cuted were modelled after queries common in scientific ap-
plications and decision support.

1. Introduction

Multidimensional data is getting more and more relevant
in the database community. On the design level, multidi-
mensional data models have been developed [1] enabling
the user to present problems from his application domain di-
rectly in their multidimensional form. The storage of data,
however, is commonly done in RDBMSs mapping the mul-
tidimensional model to relations.

Multidimensional arrays are the data type for process-
ing multidimensional data in most programming languages.
Support for multidimensional arrays in a DBMS enables
users to store data from their application area in a database
without mapping it to another data model. The RasDaMan
DBMS supports array storage with a declarative query
language and specialised storage structures. The query

1sponsored by the European Commission in the ESPRIT Domain 4:
Long-Term Research under grant no. 20073.

language offers a number of operations on arrays. Ras-
DaMan was developed at the Bavarian Research Centre
for Knowledge-Based Systems (FORWISS) during the ES-
PRIT Long-Term Research project of the same name.

Performance is a key factor when dealing with array
data, as typically large amounts of data are stored and pro-
cessed. Online archives for remote sensing data are planned
with a size of terabytes; data warehouses used as basis for
OLAP applications storing hundreds of gigabytes are not
uncommon. RasDaMan, as a specialised DBMS, offers
an optimising query language and specialised storage tech-
niques specifically geared towards requirements set by ap-
plications dealing with multidimensional data [3].

This paper compares the performance of a specialised
DBMS with a commercial relational system. Section 2 in-
troduces the RasDaMan DBMS. The storage alternatives for
arrays in RDBMSs are discussed in Section 3. The queries
and data used for performance evaluation are explained in
Section 4 followed by a discussion of the results in Section
5. Section 6 presents our conclusions.

2. The RasDaMan System

The RasDaMan system offers full DBMS support for
multidimensional arrays. It is a client/server system pro-
viding the declarative query language RasQL and a C++ API
called RasLib for users to implement their applications. The
logical view on arrays is independent from their physical
storage, which is done in tiles [2]. The system is imple-
mented on top of an ODBMS. Query processing, optimisa-
tion, and operation execution is all done completely in the
RasDaMan server, while the base DBMS is used only for
storage. The following gives a short overview of the RasQL
query language. For a more complete treatment please re-
fer to publications focusing on implementation of the Ras-
DaMan system [4].

The RasDaMan Query Language, RasQL, extends SQL-
92 with operations on multidimensional arrays or parts



thereof. This is a query from processing remote sensing im-
ages: “Return the lower left corner with intensity increased
by 10 of all those images in collection earth where the
intensity of every pixel in an area around the centre of the
image is greater than 254.”

SELECT img[0:254,0:254] + 10
FROM earth AS img
WHERE all_cell (
img[350:449,350:449] >= 254 )

One easily visible difference between SQL and RasQL is
access to parts of arrays. In the SELECT clause, a subselect
is done on a 2-D array. Other possible operations are reduc-
ing the dimensionality by fixing co-ordinates in one or more
dimension or accessing the whole range in a dimension us-
ing an asterisk as a wild card for one or both dimensional
borders. Another class of operations enables modifying cell
values of arrays. The addition operation with a constant in
this query increments every cell in the selected area by 10.

In the WHERE clause, the expres-
sion img[350:449,350:449] >= 254 compares ev-
ery cell in the relevant area to 254. The result is a Boolean
array containing TRUE for every cell which has a value
greater than or equal to 254, FALSE for every other cell.
all cell aggregates this Boolean array to one Boolean
value: TRUE if all cells are TRUE, FALSE otherwise. The
value returned by all cell is used as a condition in the
WHERE clause.

3. Storing Arrays in RDBMSs

The relational data model was designed mainly for mod-
elling business data. In the following, two commonly used
techniques for storing multidimensional arrays using rela-
tional DBMS technology as available in commercial sys-
tems on the market are discussed.

3.1 Binary Large Objects

A BLOB is basically a 1-D array of bytes. Multidimen-
sional arrays can be stored in BLOBs, if their content is lin-
earised and complex base types are mapped to bytes. Data
interpretation is completely up to the application program;
basic operations like conversion between low and big en-
dian and interpretation of data as arrays have to be imple-
mented by the application programmer. Standard SQL does
not support operations on BLOBs, they can just be selected
as a whole; no indexes can be built on their content. Se-
lection of BLOBs depending on their content can only be
done after transferring the whole data to be searched to the
client. Each RDBMS vendor provides a proprietary inter-
face to access BLOB data in their API; subselects are only
possible on 1-D intervals.

While gaining some of the advantages of DBMS tech-
nology like access control and data integrity, BLOBs are
still a solution at a semantically low level. The DBMS has
only minimal knowledge of their content, and their storage
is not optimised towards requirements set by multidimen-
sional data.

3.2 Arrays in Relations

Multidimensional data models can be mapped to rela-
tions: For every cell its co-ordinates are materialised to-
gether with its value. If more than one multidimensional
object is stored in a relation, then additionally the id of the
object has to be stored for each cell. Assuming two bytes for
each co-ordinate of a multidimensional array, a 3-D array is
stored with an overhead of at least six bytes per cell. For ef-
ficient access to the cells additional overhead is needed for
indexes on the co-ordinates. The results of queries are still
relations after transmission to the client, mapping to arrays
has to be done in the application.

4. The Test Environment

Our tests were executed on a Sun Ultra I/140 with
256MB of main memory running Solaris 2.5. All data was
stored on one local 4GB disk. The RasDaMan server was
used together with O2 Version 5.0.2. The RDBMS used
was one of the major commercial systems. A current ver-
sion was installed according to the instructions in the man-
ual with no special tuning efforts. Both DBMS client and
server were executed on one machine for all tests.

4.1 Test Data

Two data sets were used in the tests: A single 3-D vol-
ume tomogram from the medical application area (tomo)
and a set of 2-D images from the remote sensing area
(earth). The base type in both cases was a 8bit unsigned
integer. The raw size of the data sets is as follows: 256 �
256 � 154 bytes � 9:6MB for tomo and 15 images @
800� 800 bytes � 9:2MB for earth.

Storage overhead using RasDaMan or BLOB based stor-
age is negligible. In the RDBMS the raw data for tomo had
a size of 76.8 MB and for earth 73.6 MB, including the stor-
age overhead for co-ordinates. Indexes were built on each
co-ordinate and on the concatenation of all co-ordinates.
Storage of sparse data was also evaluated in the RDBMS.
Two degrees of density were evaluated on the tomo dataset:
10% in relation tomod10 and 2% in relation tomod2. This
data was artificially generated by just storing 10% resp. 2%
of the cells in the relation. The cells stored were chosen
randomly and evenly distributed. The dense dataset will be
referenced as tomod100.



Using BLOB storage, the tomogram was stored as a sin-
gle column relation with exactly one tuple containing the
whole tomogram data. The earth images were stored in a
relation with two columns: a two byte integer with an ID
and a BLOB containing the array. These two relations are
referenced as tomoblob and earthblob.

RasDaMan supports different physical storage layouts in
the form of tiling. In our tests simple regular tiling schemes
were used. The tiles were of quadratic shape and had a size
of 64kB.

4.2 Test Queries

Test queries were designed to be close to application
areas where multidimensional arrays are frequently used.
Three basic query patterns were implemented:

1. A subselect on the 3-D volume tomogram. Subselects
are a common operation in all application areas.

2. An operation summing up seven consecutive 2-D
planes of the 3-D volume tomogram resulting in one 2-
D plane. This operation was modelled after roll-up op-
erations common in OLAP applications, eg summing
up weekly sales of products in areas.

3. Content based selection of earth images. In geographic
or medical applications, it is common to further anal-
yse only “interesting” images defined by criteria based
on the content like, eg, no cloud cover.

RasDaMan

A subselect on a 3-D array in RasDaMan is expressed in the
following RasQL query:

SELECT img[20:138,10:128,30:101]
FROM tomo_cubed_64 AS img

This query selects a query box sized proportional to the
shape of the volume tomogram with a selectivity of 10%, ie
retrieval of 10% of all cells. Selectivities tested in queries
were 0.5%, 1%, 2%, 5%, 10%, 20%, 50% and 100%. The
measurements is named tmov 64.

The roll-up query is expressed as seven operations se-
lecting a 2-D slice out of a 3-D array combined with ad-
dition operations. The result is a 2-D array containing the
sums. The following query is an example for a roll-up along
the second dimension:

SELECT img[*:*,47,*:*]+img[*:*,48,*:*]+
img[*:*,49,*:*]+img[*:*,50,*:*]+
img[*:*,51,*:*]+img[*:*,52,*:*]+
img[*:*,53,*:*]

FROM tomo_cubed_64 AS img

The asterisk in the spatial dimension denotes the low-
est resp. highest index in the corresponding dimension. So
along the x and z dimensions the whole data is selected.
The seven consecutive slices for the roll-up were chosen
randomly for repeated queries.

Content based selection was used as an example for in-
troducing RasQL in Section 2. All images in earth were
rescaled to grey values from 0 to 249. Three images were
modified to contain the same value in all cells: 253, 254
resp. 255. Another three images were modified to contain
250, 251 resp. 252 in exactly one cell. The other nine im-
ages were stored without further modification. After this
processing it was possible to select one, two or three images
by adapting the WHERE clause. In the SELECT clause a
subselect of an area of interest is done. This query selects
two images using some_cell:

SELECT img[0:254,0:254]
FROM earth as img
WHERE some_cell (
img = 250 OR img = 251 )

Relations

If array data is stored in relations, it is possible to query it
using standard SQL-92 queries. The subselection query can
be easily mapped from RasQL to SQL:

SELECT x, y, z, val
FROM tomo
WHERE x BETWEEN 20 AND 138 AND

y BETWEEN 10 AND 128 AND
z BETWEEN 30 AND 101

While the subselect query in SQL is longer than the
corresponding RasQL query, the roll-up query can be ex-
pressed shorter:

SELECT x, z, SUM(val)
FROM tomo
WHERE y BETWEEN 47 AND 53
GROUP BY x, z

Transforming content based selection queries to SQL
is more difficult. The query selecting two images with
some_cellwas executed using this SQL query (the trans-
lation of the all_cell query even involves three select
statements):

SELECT *
FROM earth e1
WHERE e1.x <= 254 AND e1.y <= 254 AND

e1.id IN (
SELECT e2.id
FROM earth e2
WHERE e2.val = 250 OR e2.val = 251

);



BLOBs

To execute the queries on arrays stored in BLOBs, embed-
ded SQL programs had to be written. A program of about
50 lines executes the subselect query by mapping the 3-D
query box to a set of 1-D intervals in the BLOB. The roll-
up query was not implemented for BLOB based storage, as
it would have involved a substantial coding effort. The con-
tent based selection transfers the whole data to the client
and checks the condition on the client. The code has about
70 lines and all parameters are hard coded.

In general working with BLOBs involves a large pro-
gramming effort compared to RasQL and the RasDaMan
C++ API. Furthermore, queries are hard coded into the ap-
plication, making it impossible to support interactive ex-
plorative querying of data. Changes in application require-
ments would involve substantial modifications to the code.

5. Performance Results

Benchmarking of the queries was done with almost no
additional load on the system. The measurements were re-
peated, times reported are average times. Standard devia-
tions were very small.

5.1 Subselect Queries

Figure 1. Subselect.

Performance for subselects using the different storage
techniques is shown in Figure 1. Storing the dense array
in relations, it takes more than 35 minutes to access it as a
whole. Performance for all selectivities on tomod100 is at
least one order of magnitude worse than other storage al-
ternatives. Even when storing 90% sparse data in relation
tomod10, performance is still about a factor of five worse.
Storing only one in ten cells already more than offsets the
storage overhead in relations. The co-ordinates stored in the
relation take 6 bytes for each 1 byte cell. Yet only relation

tomod2, with a density of 2%, and BLOB based storage are
roughly comparable with storage in a specialised DBMS,
but still RasDaMan is about a factor of two faster for all
selectivities.

This also holds for small selectivities, where the rela-
tional system can use an index on one co-ordinate to reduce
the amount of data fetched from disk. The bad performance
of BLOB based storage, when compared with RasDaMan,
came unexpected. It seems that access to a large number
of 1-D intervals of data in a BLOB is an expensive opera-
tion. This has to be done, whenever the array stored is larger
than the main memory of the client, as common in applica-
tions. Overall, for subselect operations on multidimensional
arrays a specialised DBMS proved to be the most efficient
solution in all tests.

5.2 Roll-Up Queries

Figure 2. Roll-up.

Figure 2 compares the roll-up query in RasDaMan with
arrays of different densities stored in relations. Roll-ups are
done along all three axes. Again the 100% dense relation to-
mod100 has significantly worse performance than the other
measurements. For the roll-up operation, relational storage
can compete with RasDaMan already at a density of 10%.
One reason is, that the restriction to seven 2-D slices is a 1-
D restriction with a very small selectivity, thereby enabling
the RDBMS to use an index for efficiently retrieving the set
of relevant tuples.

The spatial index of RasDaMan, on the other hand, al-
ways retrieves tiles with a thickness of 40 in this dimension.
An adapted tiling strategy would give better results for this
query. For relations with a sparsity of 98%, relational stor-
age is significantly faster than RasDaMan on dense arrays.

5.3 Content Based Selection Queries

In Figure 3, performance results for the content based
selection queries are given. Queries 1, 2, 3 select one,
two, three images using a condition based on some_cell,
and queries 4, 5, 6 select one, two, three images using



Figure 3. Content based selection.

all_cell. Results are also shown for storage in BLOBs
(earthblob). The tests were executed for relational storage,
but each query took more than two hours to execute on a re-
lation with 100% density, which is two orders of magnitude
worse than the other storage techniques.

RasDaMan, when executing the queries, first accesses
all images in the earth collection tile by tile. For each tile
the comparison operation is evaluated and on the result the
condense operation some cell or all cell is applied.
If the condense operation returns true the relevant area of
this image is transferred to the client.

The selection of images is faster using BLOB based stor-
age compared to earth 64. In our implementation, whole
BLOBs are transferred to the client and the condition is
evaluated there using a simple 1-D iteration directly imple-
mented in C++ without consideration for the multidimen-
sional nature of the arrays. This more efficient, but much
less flexible, implementation of condition evaluation is one
reason for the performance advantage. In the test environ-
ment, all processes were running on the same machine. In
a network configuration, RasDaMan only would have to
transfer the result to the client, but the BLOB implemen-
tation would have to transfer the whole data. This would
make the BLOB solution much slower.

If the condition is evaluated only on a part of the image,
the same effect can be observed. RasDaMan is much faster,
because less data is read from secondary storage to evaluate
the condition. In the query small_64, the condition is
evaluated only on 1.6% of the array. This makes RasDaMan
much faster than BLOB storage, because only this part has
to be read from disk.

6. Conclusions

The aim of this work was to compare different storage
techniques for multidimensional array data using queries
from typical application areas. For scientific applications,
subselects and content based selection queries were eval-
uated. Considering that dense arrays are common in this
application area, modelling array data as relations is sev-
eral orders of magnitude slower than alternative solutions.

Modelling arrays as relations can only compete, if data with
a density of less than 2% is stored, which is not typical in
this application area.

Storage in BLOBs delivers worse performance for subs-
elect queries on arrays than a specialised DBMS. For some
queries, BLOBs can deliver comparable performance, if the
database client is connected to a local server. In a net-
worked environment, a BLOB based solution has to transfer
the whole data to the client whereas an array DBMS pro-
cesses data on the server and only ships the result of a query.
Queries on BLOBs have to be explicitly programmed in C++

resulting in 50 to 100 lines of code even for simple queries.
If scientific applications are implemented on top of a DBMS
and explorative analysis is desired, a specialised DBMS for
multidimensional arrays is the most efficient solution both
regarding performance and implementation effort.

To summarise, a specialised DBMS for multidimen-
sional arrays such as RasDaMan offers better performance
storing arrays than alternative storage techniques. Further-
more, a declarative query language based on SQL and aug-
mented for array handling enables users to do interactive
explorative data analysis. Implementing applications is pos-
sible with less effort if array functionality is supported in the
DBMS. To compete with relational systems in OLAP appli-
cations dealing with sparse data, scientific array function-
ality would have to be extended with specialised constructs
for OLAP operations.

Acknowledgements

The authors would like to thank Andreas Dehmel, Paula
Furtado and Roland Ritsch, all working in the RasDaMan
team at FORWISS.

References

[1] M. Blaschka, C. Sapia, G. Höfling, and B. Dinter. Finding
your way through multidimensional data models. In Proc. In-
ternational Workshop on Data Warehouse Design and OLAP
Technology (DWDOT, in connection with DEXA’98), Vienna,
Austria, Aug. 1998.

[2] P. Furtado and P. Baumann. Storage of multidimensional ar-
rays based on arbitrary tiling. In Proceedings of the 15th
International Conference on Data Engineering, Sydney, Aus-
tralia, Mar. 1999.

[3] N. Widmann and P. Baumann. Towards comprehensive
database support for geoscientific raster data. In Proceedings
of the ACM-GIS 97, Las Vegas, Nevada, USA, Nov. 1997.

[4] N. Widmann and P. Baumann. Efficient execution of opera-
tions in a dbms for multidimensional arrays. In Proceedings
of the SSDBM 98, Capri, Italy, July 1998.


