

Peter Baumann

A Query Language for Analytics on
Spatio-Temporally Varying Objects

Technical Report No. 38
April 2019

Department of Computer Science

A Query Language for Analytics on

Spatio-Temporally Varying Objects

Peter Baumann

Computer Science & Electrical Engineering

Jacobs University Bremen gGmbH

Campus Ring 12

28759 Bremen

Germany

E-Mail: p.baumann@jacobs-university.de

http://www.jacobs-university.de/lsis

Abstract

This report defines a high-level, abstract query language targeted at analytics on multidi-

mensional spatio-temporally varying objects. Specifically, the language focuses on ex-

traction, processing, and analysis of datacubes representing – among others – spatio-

temporal sensor, image, simulation, or statistics data. The conceptual data model is given

by coverages as per OGC and ISO standards, in particular grid coverages as defined in

OGC Coverage Implementation Schema (CIS) version 1.1.

Except for the space/time and coverage specific elements the language employs the same

expression evaluation semantics as the ISO SQL/MDA (Multi-Dimensional Arrays) ex-

tension developed by our team in parallel. A mapping of WCPS to the rasdaman array

query language, the blueprint for SQL/MDA, has been implemented and evaluated suc-

cessfully.

The document is formatted with the purpose of submitting it as a standards proposal to

OGC under the name Web Coverage Processing Service (WCPS).

Copyright © 2019 Jacobs University and Peter Baumann

mailto:p.baumann@jacobs-university.de
http://www.jacobs-university.de/lsis

iii

Contents Page

1 Scope ... 1

2 Compliance .. 1

3 Normative references .. 1

4 Terms and definitions ... 2

5 Conventions ... 2
5.1 Symbols (and abbreviated terms) ... 2
5.2 UML notation ... 2
5.3 Platform-neutral and platform-specific specifications 2

6 Conceptual coverage model .. 3
6.1 Overview .. 3
6.2 Coverage model .. 3
6.3 Coverage Identifier ... 4
6.4 Domain Set, Grid, Direct Positions ... 4
6.5 Coordinate Reference Systems (CRSs) ... 5
6.6 Interpolation ... 6
6.7 Range Values and Types .. 6
6.8 Null Set .. 7
6.9 Metadata .. 7
6.10 Coverage probing functions summary ... 7

7 WCPS coverage processing language .. 10
7.1 Expression syntax ... 10
7.1.1 processCoveragesExpr.. 11
7.1.2 processingExpr .. 13
7.1.3 storeCoverageExpr ... 13
7.1.4 encodedCoverageExpr .. 13
7.1.5 scalarExpr .. 14
7.1.6 booleanScalarExpr .. 14
7.1.7 numericScalarExpr ... 14
7.1.8 stringScalarExpr ... 14
7.1.9 coverageExpr ... 14
7.1.10 getComponentExpr ... 15
7.1.11 setComponentExpr ... 17
7.1.12 coverageIdentifier ... 18
7.1.13 inducedExpr .. 19
7.1.14 unaryInducedExpr .. 20
7.1.15 unaryArithmeticExpr ... 20
7.1.16 trigonometricExpr .. 22
7.1.17 exponentialExpr .. 24
7.1.18 booleanExpr... 25
7.1.19 castExpr ... 26
7.1.20 fieldExpr .. 27
7.1.21 binaryInducedExpr .. 28

WCPS

iv

7.1.22 rangeConstructorExpr ... 33
7.1.23 subsetExpr ... 34
7.1.24 trimExpr .. 35
7.1.25 extendExpr ... 36
7.1.26 sliceExpr ... 38
7.1.27 scaleExpr .. 40
7.1.28 crsTransformExpr .. 43
7.1.29 coverageConstructorExpr .. 45
7.1.30 coverageConstantExpr ... 47
7.1.31 condenseExpr .. 49
7.1.32 generalCondenseExpr ... 49
7.1.33 reduceExpr .. 52
7.2 Expression evaluation .. 53
7.2.1 Evaluation sequence.. 53
7.2.2 Nesting .. 53
7.2.3 Parentheses .. 53
7.2.4 Operator precedence rules ... 54
7.2.5 Range type compatibility and extension ... 54
7.3 Evaluation exceptions ... 56
7.4 processCoveragesExpr response ... 56

8 xWCPS ... 58
8.1 Overview .. 58
8.2 xWCPS language elements .. 58
8.2.1 letExpr .. 58
8.2.2 xpathExpr .. 60
8.2.3 xWcpsCoverageConstructorExpr ... 61
8.2.4 decodeCoverageExpr .. 67
8.2.5 switchExpr ... 68
8.3 Evaluation response ... 70
8.4 Metadata .. 70
8.4.1 Operator precedence rules ... 71
8.5 Character encoding .. 71
8.6 Evaluation exceptions ... 72

Annex A (normative) Abstract Test Suite .. 73

Annex B (normative) WCPS Expression Syntax .. 77

WCPS

Tables Page

Table 1 – Coverage range field data types. .. 7

Table 2 – Coverage probing functions. ... 8

Table 3 – reduceExpr definition via generalCondenseExpr .. 52

Table 4 – Type extension sequence. .. 55

WCPS

vi

Introduction

Web Coverage Processing Service (WCPS) defines a geo datacube analytics language for

server-side retrieval, filtering, processing, and fusion of multi-dimensional geospatial grid

coverages representing, for example, spatio-temporal sensor, image, simulation, or statis-

tics data. Services implementing this language provide access to original or derived sets

of grid coverage information, in forms that are useful for client-side consumption.

WCPS relies on the coverage model as defined in OGC Abstract Specification Topic 6

―Schema for Coverage Geometry and Functions ― [OGC 07-011] and the OGC Coverage

Implementation Schema (CIS) Standard [OGC 09-146rX] where coverages are defined as

―digital geospatial information representing space-varying phenomena‖, practically

speaking: regular and irregular grids, of which the regular and irregular grids are sup-

ported by WCPS currently..

The WCPS language is independent from any particular request and response encoding,

as no concrete request/response protocol is assumed. For setting up a WCPS instance,

therefore, a separate, additional specification establishing the concrete protocol is re-

quired. This allows embedding of WCPS into different target service frameworks. One

such target framework is the WCS Processing Extension [OGC 08-059r3] of the Web

Coverage Service (WCS) version 2 Standard [OGC 17-089rX].

WCPS

 1

Open Geospatial Consortium Interface:
Web Coverage Processing Service (WCPS)

1 Scope

This document defines a protocol-independent language for retrieving and processing

geospatial coverage datacubes. Version 1.1 keeps version 1.0 and adds handling of the

coverage tpes defined in the OGC Coverage Implementation Schema (CIS) 1 [09-146rX].

Further, this version 1.1 takes into account changed and new rules OGC has established

since the original version 1.0 adoption.

NOTE Following OGC‘s rules of compatibility among minor release numbers this WCPS 1.1 standard
actually applies to all CIS 1.x versions.

2 Compliance

Annex A (normative) specifies compliance tests which shall be tested by any service

claiming to implement WCPS.

3 Normative references

The following normative documents contain provisions that, through reference in this

text, constitute provisions of this standard. For dated references, subsequent amendments

to, or revisions of, any of these publications do not apply. For undated references, the lat-

est edition of the normative document referred to applies.

IETF RFC 2616, Hypertext Transfer Protocol -- HTTP/1.1

ISO 8601:2000, Data elements and interchange formats — Information interchange —

Representation of dates and times

OGC 07-092r1, Definition identifier URNs in OGC namespace, version 1.1.2

OGC 09-146r6, Coverage Implementation Schema (CIS), version 1.1

OGC 17-089r1, OpenGIS
®

Web Coverage Service (WCS) Core, version 2.1

OGC 08-059r4, WCS Processing Extension, version 2.1

W3C XQuery 3.1. W3C Recommendation 21 March 2017,

https://www.w3.org/TR/2017/REC-xquery-31-20170321/

https://www.w3.org/TR/2017/REC-xquery-31-20170321/

WCPS

2

W3C XML Path Language (XPath) Version 3.1. W3C Recommendation 21 March 2017,

http://www.w3.org/TR/xpath/

4 Terms and definitions

For the purposes of this document, the terms and definitions given in the above references

(in particular: WCS 2 [OGC 17-089rX]) apply.

5 Conventions

5.1 Symbols (and abbreviated terms)

This document assumes familiarity with the terms and concepts of WCS [OGC 17-089rX].

5.2 UML notation

All the diagrams that appear in this standard are presented using the Unified Modeling Lan-
guage (UML) static structure diagram.

5.3 Platform-neutral and platform-specific specifications

WCPS is a high-level language independent from any client/server transmission protocol

and server-side implementation paradigm. In terms of Clause 10 of OGC Abstract Speci-

fication Topic 12 ―OpenGIS Service Architecture‖, this document includes only Distrib-

uted Computing Platform-neutral specifications. This document specifies each operation

request and response in platform-neutral fashion. This is done using a semi-formal ap-

proach to recursively specifying the language syntax and semantics. The specified plat-

form-neutral data could be encoded in many alternative ways, each appropriate to one or

more specific DCPs. One service embedding and encoding is defined in the WCS Proc-

essing Extension [08-059r4]. Other encodings may specify an API (Application Pro-

gramming Interface approach) with actually no networks communication involved be-

tween ―client‖ and ―server‖.

http://www.w3.org/TR/xpath/

WCPS

 3

6 Conceptual coverage model

6.1 Overview

The coverage model of WCPS relies on the OGC Coverage Implementation Schema

(CIS). In this Clause the coverage definitions of CIS are recapitulated. For the purpose of

this standard, ―coverage‖ means ―grid coverage‖ unless expressed otherwise.

The semantics of WCPS expressions is defined via so-called probing functions which ex-

tract information from a coverage. Subclause 6.9 describes the constituents of a coverage

by defining a set of coverage probing functions.

6.2 Coverage model

A coverage is a set of locations, each one bearing some value, together with some con-

straints – in the case of gridded coverages, which WCPS focuses on, all these locations

ned to sit on some multi-dimensional grid. Following the mathematical notion of a func-

tion that maps elements of a domain (here: spatio-temporal coordinates) to a range (here:

―pixel‖, ―voxel‖, … values), a coverage consists of (Figure 1):

 a domain set of coordinate points: ―where in the multi-dimensional space can I

find values?‖

 a range set: ―what are the values?‖

 a range type: ―what do those values mean?‖

 optional metadata: ―what else should I know about these data?‖

Figure 1 – Schematic coverage UML diagram

WCPS

4

While detailing the coverage constituents we introduce a series of auxiliary functions, re-

ferred to as probing function, which will be needed for the semantics definition lateron.

6.3 Coverage Identifier

Every coverage has an identifier (―name‖) which is used in a WCPS query to address this

coverage. Therefore – and as per WCS rule, for example – coverage identifiers must be

unique within some coverage offering. Obviously this does not hold for coverages ex-

tracted and delivered somewhere. Further, coverages can be created during a query; these

may have any name, including an empty string.

6.4 Domain Set, Grid, Direct Positions

The domain set contains the locations, called direct positions, which are expressed as co-

ordinate tuples. For some given coverage C, function domain() delivers the domain set D:

D = domain(C)

All coordinates c=(x1,…,xd) in a domain set D, called the coverage‘s direct positions,

share the same dimension d>0. These coordinates are described through some multi-

dimensional Coordinate Reference System (CRS) combining one-dimensional axes in an

ordered list:

axisList(D) = (a1,…,ad)

A CRS defines an unambiguous sequence of axes, each identified in the CRS through a

unique name, such as ―Lat‖, ―Long‖, or ―date‖. The mathematical definition of CRSs and

axes is out of the scope of this standard but defined in ISO 19111. For this standard it is

sufficient that each axis contributes coordinates from a nonempty, totally ordered set of

values which can be numeric or, in the general case, strings (such as ―2020-08-05T‖). Let

ci be the set of coordinate values axis ai contributes in the domain set space. Then, the set

of direct positions in the domain can be written mathematically as

D = { p | p=(x1,…,xd), xi ci, 1 i d } c1 … cd

The gridded coverages considered in this standard impose an additional constraint: all

direct positions must sit on a multi-dimensional grid. Informally speaking this means that

every direct position inside the grid has exactly one next neighbor in both directions of

every axis and every direct position at the rim of the grid has exactly one neighbor in each

axis. Figure 2 shows some regular and irregular grid examples.

WCPS

 5

Figure 2 – Sample regular and irregular grid structures

The grid description depends on the complexity of the grid. As a grid is composed from

an ordered sequence of axes the resulting complexity is determined by the types of axes

(such as integer versus Lat versus time) as well as the rules determining the direct posi-

tions along these axes. The following axis / grid types are supported by WCPS, based on

CIS 1.1:

 A Cartesian (―index‖) grid just requires lower and upper bound (which are of type

integer).

 A grid which is still regular but uses some other unit of measure can be described

by lower and upper bounds together with the resolution, all expressed in these

units.

 An irregular grid which has individual distances along each axis can be described

by a sequence of the grid points for each axis.

 More complex types, as foreseen by CIS 1.1, are not supported by this version of

WCPS.

CIS 1.1 grid type GeneralGrid allows modelling any multi-dimensional grid based on the

above notions. The specialized CIS 1.0 grid types can be described through these general

terms: a RectifiedGrid is a grid where all axes are of type Cartesian or regular; a Referen-

ceableGrid is a grid where at least one axis is not of these types.

6.5 Coordinate Reference Systems (CRSs)

As per CIS, a coverage always has two CRSs: its Native CRS allows georeferencing, it

can be of one of the axis types above. The underlying grid is specified by some Index

CRS. Both CRSs have the same dimension.

NOTE The special case that the Native CRS is a pure Index CRS, in addition to the grid‘s Index CRS,
is possible. Practical applications include abstract matrices or tensors that are not georeferenced.

The Native CRS of a domain set is obtained through function crs(D), its Index CRS

through function indexCrs().

This standard does not define the syntax of CRS parameters. Following a change of

course in OGC, URLs are generally preferred, and OGC provides a resolver1 for CRSs,

axes, etc. at URL www.opengis.net/def/crs, www.opengis.net/def/axis/, etc. Composition

of CRSs can be done through a special constructor, crs-compound. A typical space/time

CRS is given by

1 This resolver is operated by Jacobs University on behalf of OGC. It is based on an open-source implementation avail-
able from www.rasdaman.org.

http://www.opengis.net/def/crs
http://www.opengis.net/def/axis/
http://www.rasdaman.org/

WCPS

6

http://www.opengis.net/def/crs-compound?

 1=http://www.opengis.net/def/crs/EPSG/0/4326&

 2=http://www.opengis.net/def/crs/OGC/0/AnsiDate

In practice, however, this leads to lengthy CRS URLs; while this is no problem for ma-

chine-to-machine communication it is less convenient for human readers. Therefore,

starting CIS 1.1 implementations may also support other well-known representations,

such as WKT or GDAL-style CRS composition, for example: ―EPSG:4326+OGC:Date‖.

6.6 Interpolation

Starting CIS 1.1, a coverage may carry a list of admissible interpolation methods. If there

are no such interpolations indicated then the overage is said to be discrete: only at the di-

rect positions range values are available. Otherwise; values may also be obtained in be-

tween the direct positions by using one of the interpolation methods. Such coverages are

called continuous.

NOTE If there is more than one interpolation method indicated then the different interpolations will
usually result in different values for the same in between position, hence the coverage as a whole becomes
non-deterministic.

Probing function interpolationSet(C) returns the set interpolation types applicable to the

coverage, as per CIS 1.1 GeneralGridCoverage. This set can be empty, and will be empty

if the coverage type is not GeneralGridCoverage ore a subtype thereof.

6.7 Range Values and Types

The value associated with a particular location within a coverage, in short: its point value,

can be obtained with probing function value(C,p) which is defined for every location p

indexDomain(C) and p inside domain(C).

All direct position values of a coverage share the range type which is a record structure

containing an ordered, named list of atomic values.

Requirement 1

In a coverage addressed by a WCPS request the atomic range value types shall be taken from
Table 1.

Example For an 8-bit RGB image the range type structure is given as the triple
< red: unsigned char; green: unsigned char; blue: unsigned char>.

NOTE 1 It is not required that all range fields within a coverage are of the same type.

NOTE 2 Range fields are also known as ―bands‖ or ―channels‖ or ―variables‖.

WCPS

 7

Table 1 – Coverage range field data types.

Range data type name Meaning

boolean Boolean

char 8-bit signed integer

unsigned char 8-bit unsigned integer

short 16-bit signed integer

unsigned short 16-bit unsigned integer

int 32-bit signed integer

unsigned int 32-bit unsigned integer

long 64-bit signed integer

unsigned long 64-bit unsigned integer

float Single precision floating point number

double Double precision floating point number

complex char 2*8-bit signed complex number

complex short 2*16-bit signed complex number

complex int 2*32-bit signed complex number

complex long 2*64-bit signed complex number

complex Single precision complex number
(identical to complex int)

complex2 Double precision complex number
(identical to complex long)

A coverage‘s range type description can be obtained through function rangeType() which

delivers a set of pairs of field names and field type:

rangeType(C) = { (f,t) | f rangeFieldNames(C), t T }

6.8 Null Set

As per CIS, a coverage has a – possibly empty – set of null values associated which are

ignored, e.g., in aggregations. The set of a coverage‘s values to be interpreted as null is

obtained via probing function nullSet().

6.9 Metadata

The metadata component of a coverage can contain any information. Therefore, its syntax

and semantics is not known to CIS nor WCPS. Consequently, in WCPS the metadata

component is treated as a byte string container.

6.10 Coverage probing functions summary

Table 2 lists the probing functions provided.

For notational convenience in this document, on the list and set valued items the usual list

and set functions are assumed for extraction and manipulation, such as union, inter-

WCPS

8

section. Further, application of some function to a list or set which is defined on the ele-

ments denotes simultaneous application of this function to all list or set elements.

Example For a set of numbers {-1, 0, 1} the abs() function produces:
 abs({-1, 0, 1}) = { abs(-1), abs(0), abs(1) } = { 0, 1 }
…while for a list (-1, 0, 1) the abs() function produces:
 abs((-1, 0, 1)) = (abs(-1), abs(0), abs(1)) = (1, 0, 1)

Table 2 – Coverage probing functions.

Coverage

characteristic

Probing function

for some coverage C

Comment

Identifier of the
coverage

 identifier(C) Identifier of the coverage (―cover-
age name‖ in OGC WCS terminol-
ogy); can be the empty string

Coverage Native
CRS

 crs(C) Domain set CRS/axis definition

Domain extent of
coverage, in Native
CRS

 domain(C)

:= D1 … Dd

where Di={ xi | xi coordinate

value set of axis ai } for 1 i d

Extent of the coverage in its Native
CRS; coordinate values are taken
from the values each axis provides

Coverage Index
CRS

 indexCrs(C) Index CRS of the coverage, allow-
ing for Cartesian grid coordinate
addressing

Domain extent of
coverage, in Index
CRS

 indexDomain(C)

:= I1 … Id

where loi hii Z with loi hii

for 1 i d

Extent of the coverage in Cartesian
grid coordinates, relative to the
coverage‘s Index CRS

Interpolation me-
thods

 interpolationSet(C)

 { nearest, linear, quadratic, cubic }

Unordered set, possibly empty, of
all interpolation methods applicable
to this coverage

Range type rangeType(C)

:= ((f1,t1),…, fn,tn))
where
fi are pairwise different names,
ti are admissible base types as per
Table 1

The common data type of the range
values, a record containing one or
more atomic components. Techni-
cally, the data type of the cover-
age‘s range values is described by
(i) an ordered sequence of (field
name, field type) pairs and (ii) a set
of null values of this type.

Range field name
list

 rangeFieldNames(C) Ordered list all of the coverage‘s
range fields names

Range field type rangeFieldType(C, f)

for some f rangeFieldNames(C)

The data type of one coverage range
field, given as some atomic type as
per Table 1

Null value set nullSet(C)

for all n nullSet(C):

type of n is rangeType(C)

Unordered set of all values that act
as null when appearing as coverage
range value

WCPS

 9

Range values value(C, p) for all p domain(C)

when based on the Native CRS
or

value(C, p) for all p indexDo-

main(C) when based on the grid CRS

The coverage‘s range value (―pix-
el‖, ―voxel‖) at the direct position
indicated; the direct position can be
expressed either in the Native or the
grid (Index) CRS.

metadata metadata(C) The metadata associated with the

coverage; may be an empty string

NOTE Operations in WCPS rely solely on the structural information when performing semantic
checks, i.e., on structural compatibility in operations. Ensuring semantic interoperability of coverage do-
mains and ranges is not within the current scope of WCPS.

NOTE 2 For historical reasons, imageCrs etc. is kept in addition to the modern terminology, indexCrs
etc.

Requirement 2

A coverage resulting from a WCPS query shall augment mandatory coverage parts coherent
with the requirements specified in this standard and the requirements imposed by the CIS
standard.

NOTE Parts not defined in this standard and not deducible are implementation dependent.

WCPS

10

7 WCPS coverage processing language

The WCPS coverage processing language allows clients to request processing of one or

more coverages available on a server supporting WCPS. Such a server evaluates an

expression and returns an appropriate response to the client. The result returned to the

client upon a successful request consists of an ordered sequence of one or more coverages

or scalar values.

NOTE This standard does not specify the mode of returning responses, such as synchronous or asyn-
chronous delivery. That level of behavior is defined in protocol bindings such as the WCS Processing ex-
tension [08-059rX].

A WCPS processing request consists of a processCoveragesExpr (see Subclause 7.1.1).

Each server claiming to support WCPS shall implement the coverage processing opera-

tion as specified in the following subclauses.

NOTE WCPS has been designed so as to be ―safe in evaluation‖ – i.e., implementations are possible
where any valid WCPS request can be evaluated in a finite number of steps, based on the operation
primitives. Hence, WCPS implementations can be constructed in a way that no single request can render the
service permanently unavailable. Notwithstanding, it still is possible to send requests that will impose high
workload on a server.

NOTE 2 Data items within a WCPS response list can be heterogeneous in size and structure. In particu-
lar, the coverages within a response list can have different dimensions, domains, range types, etc. However,
a response always consists of either coverages or scalar values, no mix of both.

7.1 Expression syntax

The WCPS primitives plus the nesting capabilities form an expression language which is

independent from any particular encoding and collectively is referred to as the WCPS

language. In the following subsections the language elements are detailed. The complete

syntax is listed in Appendix B.

A WCPS expression is called admissible if and only if it adheres to the syntax and se-

mantics of the WCPS language definition.

Requirement 3

WCPS servers shall return an exception in response to a WCPS request that is not admissi-
ble.

Example The coverage expression fragment

$C * 2

is admissible as it adheres to WCPS syntax whereas

$C $C

seen as part of a coverage expression violates WCPS syntax and, hence, is not admissible.

WCPS

 11

The semantics of a WCPS expression is defined by indicating, for all admissible expres-

sions, the value of each coverage constituent as defined in Subclause 6.9.

An expression is valid if and only if it is admissible and it complies with the conditions

imposed by the WCPS language semantics.

Example The coverage expression following is valid if and only if the WCPS offers a coverage, in the
processing expression bound to variable $C, that has a numeric field named red.

$C.red * 2.5

NOTE In the remainder of this section, tables are used to describe the effect of an operation on each
coverage constituent. For the reader‘s convenience an extra column ―Changed?‖ is provided containing an
―X‖ character whenever the operation changes the resp. constituent, and left blank whenever the operation
does not affect the resp. constituent.

7.1.1 processCoveragesExpr

The processCoveragesExpr element processes a list of coverages in turn.

Each coverage is optionally checked first for fulfilling some predicate, and gets selected –

i.e., contributes to an element of the result list – only if the predicate evaluates to true.

Each coverage selected will be processed, and the result will be appended to the result

list. This result list, finally, is returned as the ProcessCoverages response unless no ex-

ception was generated.

Requirement 4

A processCoveragesExpr shall be defined as below.

Let

v1, … vn be n pairwise different iteratorVars (n 1),

L1, … Ln be n coverageLists (n 1),

b be a booleanScalarExpr possibly containing occurrences of one or more vi

(1 i n),

P be a processingExpr possibly containing occurrences of vi (1 i n).

Then,

for any processCoveragesExpr E,

 where

 E = for v1 in (L1),
 v2 in (L2),

 … ,

 vn in (Ln)

 where b

 return P

the result R of evaluating processCoveragesExpr E is constructed as follows:

WCPS

12

Let R be the empty sequence;

while L1 is not empty:

{ assign the first element in L1 to iteration variable v1;

 while L2 is not empty:

 { assign the first element in L2 to iteration variable v2;

 …

 while Ln is not empty:

 { assign the first element in Ln to iteration variable vn;

 evaluate b and P, substituting any occurrence of iteration

 variable vi by the corresponding coverage;

 if (b)

 then

 append evaluation result to R;

 remove the first element from Ln;

 }

 …

 }

 remove the first element from L2;

 }

 remove the first element from L1;

}

The elements contained in the coverageList clause, constituting coverage identifiers, are

taken from the coverage identifiers advertised by the server.

NOTE 1 In a WCS framework such information can be obtained via a GetCapabilities request.

NOTE 2 Coverage identifiers may occur more than once in a coverageList. In this case the coverage will
be evaluated each time it appears, respecting the overall inspection sequence.

Example Assume a WCPS server offers coverages A, B, and C. Then, the server may execute the follow-
ing WCPS request:

for $c in (A, B, C)

return encode($c, "image/tiff")

to produce a result list containing three TIFF-encoded coverages.

Example Assume a WCPS server offers same-size satellite images A, B, and C and a coverage M acting
as a mask (i.e., with range values between 0 and 1 and the same extent as A, B, and C). Then, masking each
satellite image can be performed with a request like the following:

for $s in (A, B, C),

 $m in (M)

return encode($s * $m, "image/tiff")

WCPS

 13

7.1.2 processingExpr

Requirement 5

A processingExpr element shall be either a encodedCoverageExpr (see Subclause 7.1.4),

or a storeCoverageExpr (see Subclause 7.1.3), or a scalarExpr (see Subclause 7.1.5).

7.1.3 storeCoverageExpr

NOTE The storeCoverageExpr element, introduced with WCPS 1.0, is removed from the standard as
more comprehensive functionality for side effects is provided with other OGC standards, such as PubSub.

7.1.4 encodedCoverageExpr

The encodedCoverageExpr element specifies encoding of a coverage-valued request

result by means of a data format and possible extra encoding parameters.

Data format encodings are governed by the OGC coverage encoding standards; these are

built to materialize, to the largest extent possible, the coverage‘s metadata.

Example For some georeferenced coverage, a GeoTIFF result file will contain the coverage‘s geo coor-
dinate and resolution information as per the OGC GeoTIFF coverage encoding standard [12-100rX].

Requirement 6

An encodedCoverageExpr shall be defined as below.

Let

C be a coverageExpr,

f be a string,

where

 f is the name of a data format allowed for C,

 the data format specified by f supports encoding of a coverage of C‘s do-

main and range.

Then,

for any byteString S

where S is one of

 Se = encode (C , f)

 See = encode (C , f, extraParams)

with extraParams being a string enclosed in double quotes (‗"‘)

S is defined as that byte string which encodes C into the data format specified by

formatName and the optional extraParams. Syntax and semantics of the

extraParams are not specified in this standard.

NOTE 1 In a WCS framework, the data encoding formats supported can be obtained from the support-
edFormats list contained in the response to a GetCapabilities request.

NOTE 2 Some format encodings may lead to a loss of information, not allowing to reconstruct a com-
plete coverage.

WCPS

14

NOTE 3 The extraParams are data format and implementation dependent.

Example The following expression specifies retrieval of coverage C encoded in HDF:

encode(C, "application/x-hdf")

Example A WCPS implementation may encode a JPEG quality factor of 50% as the string ".50".

7.1.5 scalarExpr

Requirement 7

A scalarExpr shall be either a getComponentExpr (see Subclause Error! Reference

source not found.) or a booleanScalarExpr (see Subclause 7.1.6) or a numericScala-

rExpr (see Subclause 7.1.7) or a stringScalarExpr (see Subclause 7.1.7).

NOTE As such, such an expression returns a (simple or composite) result value, that is: not a coverage.

7.1.6 booleanScalarExpr

Requirement 8

A booleanScalarExpr shall be a scalarExpr (see Subclause 7.1.5) whose result type is

Boolean. Operations shall be the well-known Boolean functions and, or, xor, and not ,

arithmetic comparison (>, <, >=, <=, =, !=) on strings and numbers, and parenthesing, all

bearing the well-known standard semantics.

7.1.7 numericScalarExpr

Requirement 9

A numericScalarExpr shall be a scalarExpr (see Subclause 7.1.5) whose result type is

numeric (i.e., an integer, float, or complex number).

Example Numeric constants and numerically-valued metadata retrieval functions deliver numbers.

Operations provided are the well-known arithmetic (+, -, *, /) operations bearing the

standard mathematical semantics. The rounding function, round(), rounds a real (not

complex) number to the next integer number towards zero. A condenseExpr (see Sub-

clause 7.1.31) derives a summary value from a coverage expression.

7.1.8 stringScalarExpr

Requirement 10

A stringScalarExpr shall be a scalarExpr (see Subclause 7.1.5) whose result type is cha-

racter string of length greater or equal to zero.

Example IdentifierExprs deliver strings.

7.1.9 coverageExpr

Requirement 11

A coverageExpr shall be either a coverageIdentifier (see Subclause 7.1.12), or setCom-

WCPS

 15

ponentExpr (see Subclause Error! Reference source not found.), or an inducedExpr

(see Subclause 7.1.13), or a subsetExpr (see Subclause 7.1.23), or a crsTransformExpr

(see Subclause Requirement 42), or a scaleExpr (see Subclause 7.1.27), or a coverage-

ConstructorExpr (see Subclause 7.1.29), or a coverageConstantExpr (see Subclause

0).

A coverageExpr always evaluates to a single coverage.

7.1.10 getComponentExpr

The getComponentExpr element extracts a coverage description element from a cover-

age.

NOTE The grid point value sets (―pixels‖, ―voxels‖, …) can be extracted from a coverage using sub-
setting operations (see Subclause 7.1.22).

Requirement 12
A getComponentExpr shall be defined as below.

Let

C be a coverageExpr.

Then,

The following metadata extraction functions are defined;

the result shall be given by the probing functions defined in Table 2;

strings shall be interpreted case-sensitive;

quotes shall be single or double quotes, but no mix per quoted element;

arbitrary whitespace may occur in between any two syntactical elements:

 WCPS function

 (for some coverage C)
Result description

Examples

id(C)

identifier(C)

name(C)

identifier(C)

Name of coverage as sin-

gle- or double quoted

string; may be of zero

length, represented by a

pair of quotes

'myLittleCove '

""

crs(C) crs(C)

Identifier of the coverage‘s

CRS (e.g., CRS URL), in

quotes

'EPSG:4326+OGC

:date '

domain(C) domain(C)

(lower bound, up-

per bound) numer-

WCPS

16

ic / string pair

indexCrs(C) indexCRS(C)

Index CRS identifier, in

quotes

'Index3D '

indexDomain(C)

imageCrsDomain(C)
indexDomain(C)

List of named axes with

lower and upper bound per

axis, in proper axis order as

per Index CRS, in brackets

[i(0:9),j(0:100),

k(-10:+10)]

indexDomain(C,a)

imageCrsDomain(C,a)
from indexDomain(C) ,

lower and upper bound for

the axis indicated, as per

Index CRS

 (0:9)

indexDomain(C,a).lo

imageCrsDomain(C,a).lo

indexDomain(C,a).hi

imageCrsDomain(C,a).hi

from indexDomain(C) ,

lower / upper bound, resp.,

for the axis indicated, as

per Index CRS

 9

nullSet(C) nullSet(C)

curly-braced set of values,

each structured according

to rangeType(C); this set

may be empty.

{ (255,255,255),

(0,0,0) }

{ -9999 }

interpolationSet(C) interpolationSet(C)

parenthesized, comma-

separated list of interpola-

tion identifiers; this list

may be empty.

'linear,quadratic,

cubic'

'nearest'

Example For some stored coverage named ―iamacoverage‖ addressed by variable $c, the following ex-

pression evaluates to ―iamacoverage‖:

id($c)

NOTE 1 The term ―Image CRS‖ is becoming deprecated by the relevant coverage standards, being re-
placed by ―Index CRS‖. For backwards compatibility the old function names are kept, with an identical
semantics.

Further, several concepts based on the deprecated WCS 1.x coverage model are not supported by CIS, in-
cluding interpolation default and per-axis interpolation methods. These have been dropped.

NOTE 2 Not all information about a coverage can be retrieved this way. In a WCS framework, adding
the information supplied in a GetCapabilities and DescribeCoverage response provides complete informa-
tion about a coverage.

WCPS

 17

7.1.11 setComponentExpr

Some of a coverage‘s constituents can be changed in isolation (such as its name), while

others would require the whole coverage to be redefined (such as the CRS or domain).

The setComponentExpr element allows deriving a coverage with components changed

where this is possible in isolation, leaving untouched all components not addressed.

Requirement 13
A setComponentExpr shall be defined as below.

Let

C1 be a coverageExpr,

s be a stringConstant,

m, n, p be integers with m 0 and n 0 and p 0,

null be a rangeExpr with null nullSet(C1),

null1, …, nullm be rangeExprs cast-compatible with type rangeType(C1),

im1, ..., imn be interpolationMethods

with fi rangeFieldNames(C1) and im interpolationSet(C1) for 1 i n,

crs be a crsName.

Then,

for any coverageExpr C2

where C2 is one of

 Cid = setIdentifier (C1, s)

 | setId (C1, s)

 | setName (C1, s)

 Cnull = setNull (C1, { null1, …, nullm })

 Cint = setInterpolation (C1, { im1,... , imn })

 Cmeta = setMetadata (C1, s)

C2 is defined as follows:

 Coverage constituent Changed?

 identifier(C2) = s for C2=Cid,

 identifier(C2) = identifier(C1) otherwise
X

 crs(C2) = crs(C1)

 domain(C2) = domain(C1)

 indexCrs(C2) = indexCrs(C1)

 indexDomain(C2) = indexDomain(C1)

 interpolationSet(Cint) = { im1, ..., imn }, X

WCPS

18

interpolationSet(C2) = interpolationSet(C1) otherwise

 rangeType(C2) = rangeType(C1)

for all range fields r rangeFieldNames(C2):

 rangeFieldType(C2,r) = rangeFieldType(C1,r)

 nullSet(C2) = { null1,... , nullm } for C2=Cmeta,

 nullSet(C2) = nullSet(C1) otherwise

X

 for all p domain(C2):

 value(C2,p) = value(C1,p)

 metadata(Cmeta) = s for C2=Cmeta,

 metadata(C2) = metadata(C1) otherwise
X

Example The following coverage expressions set various items in a coverage:

setId($c, 'myLittleCoverage')

setNull($c, { -9999, -9998 })

setInterpolation($c, { linear, quadratic })

setMetadata($c, "<InspireMetadata>…</InspireMetadata>")

7.1.12 coverageIdentifier

The coverageIdentifier element represents the name of a single coverage offered by the

server addressed. It is represented by a coverage variable indicated in the processCove-

ragesExpr clause (see Subclause 7.1.1).

Requirement 14
A coverageIdentifier shall be defined as below.

Let

id be a variableName bound to a coverage C1 offered by the server.

Then,

for any coverageExpr C2,

where

 C2 = id

C2 is defined as follows:

 Coverage constituent Changed?

 identifier(C2) = identifier(C1)

WCPS

 19

 crs(C2) = crs(C1)

 domain(C2) = domain(C1)

 indexCrs(C2) = indexCrs(C1)

 indexDomain(C2) = indexDomain(C1)

 interpolationSet(C2) = interpolationSet(C1)

 rangeType(C2) = rangeType(C1)

for all range fields r rangeFieldNames(C2):

 rangeFieldType(C2,r) = rangeFieldType(C1,r)

 nullSet(C2) = nullSet(C1)

 for all p domain(C2):

 value(C2,p) = value(C1,p)

 metadata(C2) = metadata(C1)

Example The following coverage expression evaluates to the complete, unchanged coverage C, assuming

that coverage iteration variable $c is bound to it at the time of evaluation:

$c

7.1.13 inducedExpr

Requirement 15

An inducedExpr shall be either a unaryInducedExpr (see Subclause 7.1.14) or a bina-

ryInducedExpr (see Subclause 0) or a rangeConstructorExpr (see Subclause 7.1.22).

Induced operations allow to simultaneously apply a function originally working on a sin-

gle value to all grid point values of a coverage.

Requirement 16

In an inducedExpr, in case the range type contains more than one range component, the

function shall be applied to each point simultaneously.

Requirement 17
In an inducedExpr, whenever a numeric argument is expected (such as a coverage with nu-

meric range fields), Boolean false and true shall be interpreted as 0 and 1, resp. Conversely,

whenever a Boolean argument is expected (such as a coverage with numeric range fields),

then 0 and 1 shall be interpreted as Boolean false and true, resp.

Requirement 18
In an inducedExpr, whenever one of the point values (―pixels‖, etc.) participating in an in-
duced operation is equal to one of the null values of its coverage then the result of the value

WCPS

20

combination shall be one of the values in the participating coverage‘s null value set (for a

unary induced operation) or one of the values in the null value set intersection of both partic-
ipating coverages (for a binary induced operation) if said intersection is not empty. If no null
value is available (for a unary induced operation) or the intersection of both input coverages‘

null values is empty (for a binary induced operation) then the server shall respond with a ser-
vice exception.

Requirement 19

In an inducedExpr the result coverage shall have the same domain as the input coverage(s).

NOTE 1 In case of an n-ary induced operation, n>1, all input coverages need to share the same domain
set as a precondition.

NOTE 2 The result may have a different range type, see Subclause 7.2.5. NOTE 2 The idea is that for
each operation available on the range type, a corresponding coverage operation is provided (―induced from
the range type operation‖) [1] [2].

Example Adding two RGB images will apply the ―+‖ operation to each pixel, and within a pixel to each
range field in turn.

7.1.14 unaryInducedExpr

The unaryInducedExpr element specifies a unary induced operation, i.e., an operation

where only one coverage argument occurs.

NOTE The term ―unary‖ refers only to coverage arguments; it is well possible that further non-
coverage parameters occur, such as an integer number indicating the shift distance in a bit() operation.

Requirement 20

A unaryInducedExpr shall be either a unaryArithmeticExpr, or trigonometricExpr, or

exponentialExpr (in which case it evaluates to a coverage with a numeric range type; see

Subclauses 7.1.15, 7.1.16, 7.1.17), a booleanExpr (in which case it evaluates to a Boo-

lean expression; see Subclause 7.1.18), a castExpr (in which case it evaluates to a cover-

age with unchanged values, but another range type; see Subclause 7.1.19), or a fieldExpr

(in which case a range field selection is performed; see Subclause 7.1.20).

7.1.15 unaryArithmeticExpr

The unaryArithmeticExpr element specifies a unary induced arithmetic operation.

Requirement 21
A unaryArithmeticExpr shall be defined as below.

Let

C1 be a coverageExpr

Then,

for any coverageExpr C2

where C2 is one of

WCPS

 21

 Cplus = + C1

 Cminus = - C1

 Csqrt = sqrt(C1)

 Cabs = abs(C1)

C2 is defined as follows:

 Coverage constituent Changed?

 identifier(C2) = ―‖ (empty string) X

 crs(C2) = crs(C1)

 domain(C2) = domain(C1)

 indexCrs(C2) = indexCrs(C1)

 indexDomain(C2) = indexDomain(C1)

 interpolationSet(C2) = interpolationSet(C1)

 rangeFieldNames(C2) = rangeFieldNames(C1)

 for all range fields r rangeFieldNames(C2):

 rangeFieldType(Cplus,r) = rangeFieldType(C1,r),

 rangeFieldType(Cminus,r) = rangeFieldType(C1,r)

 if rangeFieldType(Cminus,r) { char, short, int, long, float,

 double, complex, complex2 },

 rangeFieldType(Cminus,r) = char

 if rangeFieldType(C1,r) = unsigned char,

 rangeFieldType(Cminus,r) = short

 if rangeFieldType(C1,r) = unsigned short,

 rangeFieldType(Cminus,r) = int

 if rangeFieldType(C1,r) = unsigned int,

 rangeFieldType(Cminus,r) = long

 if rangeFieldType(C1,r) = unsigned long,

 rangeFieldType(Csqrt,r) = double

 if rangeFieldType(C1,r) { complex, complex2 }

 and C1.r 0,

 rangeFieldType(Csqrt,r) = complex2 otherwise,

 rangeFieldType(Cabs,r) = rangeFieldType(C1,r)

 if rangeFieldType(C1,r) { boolean, unsigned char,

 unsigned short, unsigned int, unsigned long, float,

 double },

 rangeFieldType(Cabs,r) = unsigned char

X

WCPS

22

 if rangeFieldType(C1,r) = char,

 rangeFieldType(Cabs,r) = unsigned short

 if rangeFieldType(C1,r) = short,

 rangeFieldType(Cabs,r) = unsigned int

 if rangeFieldType(C1,r) = int,

 rangeFieldType(Cabs,r) = unsigned long

 if rangeFieldType(C1,r) = long,

 rangeFieldType(Cabs,r) = float

 if rangeFieldType(C1,r) { float, complex },

 rangeFieldType(Cabs,r) = double

 if rangeFieldType(C1,r) { double, complex2}

 nullSet(C2) = {} X

 for all p domain(C2):

 value(Cplus, p) = value(C1, p),

 value(Cminus, p) = - value(C1, p),

 value(Csqrt, p) = sqrt(value(C1, p)),

 value(Cabs, p) = abs(value(C1, p))

X

 metadata(C2) = metadata(C1)

Example The following coverage expression evaluates to a float-type coverage where each range value
contains the square root of the sum of the corresponding source coverages‘ values.

sqrt($c + $d)

7.1.16 trigonometricExpr

The trigonometricExpr element specifies a unary induced trigonometric operation.

Requirement 22
A trigonometricExpr shall be defined as below.

Let

C1 be a coverageExpr

Then,

for any coverageExpr C2

where C2 is one of

 Csin = sin(C1)

 Ccos = cos(C1)

 Ctan = tan(C1)

 Csinh = sinh(C1)

 Ccosh = cosh(C1)

 Carcsin = arcsin(C1)

WCPS

 23

 Carccos = arccos(C1)

 Carctan = arctan(C1)

C2 is defined as follows:

 Coverage constituent Changed?

 identifier(C2) = ―‖ (empty string) X

 crs(C2) = crs(C1)

 domain(C2) = domain(C1)

 indexCrs(C2) = indexCrs(C1)

 indexDomain(C2) = indexDomain(C1)

 interpolationSet(C2) = interpolationSet(C1)

 rangeFieldNames (C2) = rangeFieldNames (C1)

 for all fields r rangeFieldNames(C2):

 rangeFieldType(C2,r) = complex2

 if rangeFieldType(C1,r) { complex, complex2 },

 rangeFieldType(C2,r) = double

 otherwise

X

 nullSet(C2) = {} X

 for all p domain(C2):

 value(Csin,p) = sin(value(C1,p))

 value(Ccos,p) = cos(value(C1,p))

 value(Ctan,p) = tan(value(C1,p))

 value(Csinh,p) = sinh(value(C1,p))

 value(Ccosh,p) = cosh(value(C1,p))

 value(Carcsin,p) = arcsin(value(C1,p))

 value(Carccos,p) = arccos(value(C1,p))

 value(Carctan,p) = arctan(value(C1,p))

X

metadata(C2) = metadata(C1)

Example The following expression replaces all values of the coverage addressed by $c with their sine:

sin($c)

Example To enforce a complex result for real-valued arguments the input coverage can be cast to com-
plex:

WCPS

24

arcsin((complex) $c)

7.1.17 exponentialExpr

The exponentialExpr element specifies a unary induced exponential operation.

Requirement 23
An exponentialExpr shall be defined as below.

Let

C1 be a coverageExpr,

p be a floatConstant

Then,

for any coverageExpr C2

where C2 is one of

 Cexp = exp(C1)

 Clog = log(C1)

 Cln = ln(C1)

 Cpow = pow(C1, p)

C2 is defined as follows:

 Coverage constituent Changed?

 identifier(C2) = ―‖ (empty string) X

 crs(C2) = crs(C1)

 domain(C2) = domain(C1)

 indexCrs(C2) = indexCrs(C1)

 indexDomain(C2) = indexDomain(C1)

 interpolationSet(C2) = interpolationSet(C1)

for all fields r rangeFieldNames(C2):

 rangeFieldType(C2,r) = complex2

 if rangeFieldType(C1,r) { complex, complex2 },

 rangeFieldType(C2,r) = double

 otherwise

X

 nullSet(C2) = nullSet(C1)

 for all p domain(C2):

 value(Cexp, p) = exp(value(C1,p))

X

WCPS

 25

 value(Clog , p) = log(value(C1,p))

 value(Cln , p) = ln(value(C1,p))

 value(Cpow, p) = value(C1,p)p

 metadata(C2) = metadata(C1)

Example The following expression replaces all (nonnegative numeric) values of coverage C with their
natural logarithm:

ln($c)

7.1.18 booleanExpr

The booleanExpr element specifies a unary induced Boolean operation.

Requirement 24
A booleanExpr shall be defined as below.

Let

C1 be a coverageExpr,

n be a positive integer number.

Then,

for any coverageExpr C2

where C2 is one of

 Cnot = not C1

 Cbit = bit(C1 , n)

where n is an expression evaluating to a nonnegative integer value

C2 is defined as follows:

 Coverage constituent Changed?

 identifier(C2) = ―‖ (empty string) X

 crs(C2) = crs(C1)

 domain(C2) = domain(C1)

 indexCrs(C2) = indexCrs(C1)

 indexDomain(C2) = indexDomain(C1)

 interpolationSet(C2) = interpolationSet(C1)

 rangeFieldNames (C2) = rangeFieldNames (C1)

WCPS

26

 for all fields r rangeFieldNames(C2):

 rangefieldType(C2,r) = boolean

X

 nullSet(C2) = {} X

 for all p domain(C2):

 value(Cnot , p) = not(value(C1,p))

 value(Cbit, p) = (value(C1,p) >> n) mod 2

metadata(C2) = metadata(C1)

Example The following expression inverts all (assumed: Boolean) range field values of coverage $c:

not $c

NOTE The operation bit(a,b) extracts bit position b (assuming a binary representation) from int-
eger number a and shifts the resulting bit value to bit position 0. Hence, the resulting value is either 0 or 1.

7.1.19 castExpr

The castExpr element specifies a unary induced cast operation, that is: to change the

range type of the coverage while leaving all other properties unchanged. All range com-

ponents are converted to this same type.

NOTE Depending on the input and output types result possibly may suffer from a loss of accuracy
through data type conversion.

Requirement 25
A castExpr shall be defined as below.

Let

C1 be a coverageExpr,

t be a range field type name.

Then,

for any coverageExpr C2

where

 C2 = (t) C1

C2 is defined as follows:

 Coverage constituent Changed?

 identifier(C2) = ―‖ (empty string) X

 crs(C2) = crs(C1)

WCPS

 27

 domain(C2) = domain(C1)

 indexCrs(C2) = indexCrs(C1)

 indexDomain(C2) = indexDomain(C1)

 interpolationSet(C2) = interpolationSet(C1)

rangeFieldNames (C2) = rangeFieldNames (C1)

 for all fields r rangeFieldNames(C2):

 rangeFieldType(C2,r) = t

X

 nullSet(C2) = {} X

 for all p domain(C2):

 value(C2 , p) = (t) value(C1,p)

X

metadata(C2) = metadata(C1)

Example the result range type of the following expression will be char, i.e., 8 bit:

(char) ($c / 2)

7.1.20 fieldExpr

The fieldExpr element specifies a unary induced field selection operation. Fields are se-

lected by their name, in accordance with the WCS range field subsetting operation.

NOTE Due to the current restriction to atomic range fields, the result of a field selection has atomic
values too.

Requirement 26
A fieldExpr shall be defined as below.

Let

C1 be a coverageExpr,

f be a fieldName appearing in rangeFieldNames(C1),

i be an integer with 0 i<|rangeFieldNames(C1)|.

Then,

for any coverageExpr C2

where C2 is one of:

 C2,f = C1 . f

 C2,i = C1 . i

C2 is defined as follows:

WCPS

28

 Coverage constituent Changed?

 identifier(C2) = ―‖ (empty string) X

 crs(C2) = crs(C1)

 domain(C2) = domain(C1)

 indexCrs(C2) = indexCrs(C1)

 indexDomain(C2) = indexDomain(C1)

 interpolationSet(C2) = interpolationSet(C1)

rangeFieldNames (C2) = (f), the sequence containing only f X

 rangeFieldType(C2,f) = rangeFieldType(C1,f) X

 nullSet(C2) = {} X

 for all p domain(C2):

 value(C2,f,p) = value(C1.f,p)

 value(C2,i,p) = value(C1.g,p) where g is the i
th

 field in

rangeFieldNames(C1)

X

metadata(C2) = metadata(C1)

Example Let $c refer to a coverage with range type integer. Then the following request snippet describes

a single-field, integer-type coverage where each grid point value contains the difference between red and
green band:

$c.red - $c.green

Requirement 27
In a fieldExpr C.f where |rangeFieldNames(C)|=1 shall be identical to C.

Example Let $c refer to a coverage with range component red, $d a single-component range type (say,

a panchromatic satellite scene). Assuming both are compatible the following expression is admissible:

$c.red - $d

7.1.21 binaryInducedExpr

The binaryInducedExpr element specifies a binary induced operation, i.e., an operation

involving two coverage-valued arguments.

Requirement 28
Both participating coverages shall have the same number of range components; otherwise

the server shall respond with a service exception.

WCPS

 29

Requirement 29
The operand coverage range types shall be numeric.

Requirement 30
A binaryExpr shall be defined as below.

Let

C1, C2 be coverageExprs,

S1, S2 be scalarExprs,

where

 crs(C1) = crs(C2),

 domain(C1,a) = domain(C2,a),

 indexCrs(C1) = indexCrs(C2),

 indexDomain(C1) = indexDomain(C2),

 rangeFieldNames(C1) = rangeFieldNames(C2),

 rangeType(C1,f) is cast-compatible with rangeType(C2,f) or

 rangeType(C2,f) is cast-compatible with rangeType(C1,f)

 for all f rangeFieldNames(C1).

Then,

for any coverageExpr C3

where C3 is one of

 CplusCC = C1 + C2

 CminCC = C1 - C2

 CmultCC = C1 * C2

 CdivCC = C1 / C2

 CandCC = C1 and C2

 CorCC = C1 or C2

 CxorCC = C1 xor C2

 CeqCC = C1 = C2

 CltCC = C1 < C2

 CgtCC = C1 > C2

 CleCC = C1 <= C2

 CgeCC = C1 >= C2

 CneCC = C1 != C2

 CovlCC = C1 overlay C2

 CplusSC = S1 + C2

 CminSC = S1 - C2

 CmultSC = S1 * C2

 CdivSC = S1 / C2

 CandSC = S1 and C2

 CorSC = S1 or C2

 CxorSC = S1 xor C2

 CeqSC = S1 = C2

WCPS

30

 CltSC = S1 < C2

 CgtSC = S1 > C2

 CleSC = S1 <= C2

 CgeSC = S1 >= C2

 CneSC = S1 != C2

 CovlSC = S1 overlay C2

 CplusCS = C1 + S2

 CmincS = C1 - S2

 CmultCS = C1 * S2

 CdivCS = C1 / S2

 CandCS = C1 and S2

 CorCS = C1 or S2

 CxorCS = C1 xor S2

 CeqCS = C1 = S2

 CltCS = C1 < S2

 CgtCS = C1 > S2

 CleCS = C1 <= S2

 CgeCS = C1 >= S2

 CneCS = C1 != S2

 CovlCS = C1 overlay S2

C3 is defined as follows:

 Coverage constituent Changed?

 identifier(C3) = ―‖ (empty string) X

 crs(C3) = crs(C1)

 domain(C3) = domain(C1)

 indexCrs(C3) = indexCrs(C1)

 indexDomain(C3) = indexDomain(C1)

 interpolationSet(C3) = interpolationSet(C1) interpolationSet(C2) X

 rangeFieldNames (C3) = rangeFieldNames (C1)

 for all r rangeFieldNames(C3):

 rangeFieldType(CplusCC, r) is given by Section 7.2.5

 rangeFieldType(CminCC, r) is given by Section 7.2.5

 rangeFieldType(CmultCC, r) is given by Section 7.2.5

 rangeFieldType(CdivCC, r) is given by Section 7.2.5

 rangeFieldType(CandCC, r) = boolean

 rangeFieldType(CorCC, r) = boolean

X

WCPS

 31

 rangeFieldType(CxorCC, r) = boolean

 rangeFieldType(CeqCC, r) = boolean

 rangeFieldType(CltCC, r) = boolean

 rangeFieldType(CgtCC, r) = boolean

 rangeFieldType(CleCC, r) = boolean

 rangeFieldType(CgeCC, r) = boolean

 rangeFieldType(CneCC, r) = boolean

 rangeFieldType(CovlCC, r) = rangeFieldType(C1, r)

 rangeFieldType(CplusSC, r) is given by Section 7.2.5

 rangeFieldType(CminSC, r) is given by Section 7.2.5

 rangeFieldType(CmultSC, r) is given by Section 7.2.5

 rangeFieldType(CdivSC, r) is given by Section 7.2.5

 rangeFieldType(CandSC, r) = boolean

 rangeFieldType(CorSC, r) = boolean

 rangeFieldType(CxorSC, r) = boolean

 rangeFieldType(CeqSC, r) = boolean

 rangeFieldType(CltSC, r) = boolean

 rangeFieldType(CgtSC, r) = boolean

 rangeFieldType(CleSC, r) = boolean

 rangeFieldType(CgeSC, r) = boolean

 rangeFieldType(CneSC, r) = boolean

 rangeFieldType(CovlSC, r) = rangeFieldType(C2)

 rangeFieldType(CplusCS, r) is determined by Table 4

 rangeFieldType(CminCS, r) is determined by Table 4

 rangeFieldType(CmultCS, r) is determined by Table 4

 rangeFieldType(CdivCS, r) is determined by Table 4

 rangeFieldType(CandCS, r) = boolean

 rangeFieldType(CorCS, r) = boolean

 rangeFieldType(CxorCS, r) = boolean

 rangeFieldType(CeqCS, r) = boolean

 rangeFieldType(CltCS, r) = boolean

 rangeFieldType(CgtCS, r) = boolean

 rangeFieldType(CleCS, r) = boolean

 rangeFieldType(CgeCS, r) = boolean

 rangeFieldType(CneCS, r) = boolean

 rangeFieldType(CovlCS, r) = boolean

 nullSet(C3) = {} X

 for all p domain(C3):

 value(CplusCC, p) = value(C1, p) + value(C2, p)

 value(CminCC, p) = value(C1, p) - value(C2, p)

 value(CmultCC, p) = value(C1, p) * value(C2, p)

 value(CdivCC, p) = value(C1, p) / value(C2, p)

 value(CandCC, p) = value(C1, p) and value(C2, p)

X

WCPS

32

 value(CorCC, p) = value(C1, p) or value(C2, p)

 value(CxorCC, p) = value(C1, p) xor value(C2, p)

 value(CeqCC, p) = value(C1, p) = value(C2, p)

 value(CltCC, p) = value(C1, p) < value(C2, p)

 value(CgtCC, p) = value(C1, p) > value(C2, p)

 value(CleCC, p) = value(C1, p) <= value(C2, p)

 value(CgeCC, p) = value(C1, p) >= value(C2, p)

 value(CneCC, p) = value(C 1, p) != value(C2, p)

 value(CovlCC, p) = value(C2, p) if value(C1, p)=0

 value(C1, p) otherwise

 value(CplusSC, p) = S1 + value(C2, p)

 value(CminSC, p) = S1 - value(C2, p)

 value(CmultSC, p) = S1 * value(C2, p)

 value(CdivSC, p) = S1 / value(C2, p)

 value(CandSC, p) = S1 and value(C2, p)

 value(CorSC, p) = S1 or value(C2, p)

 value(CxorSC, p) = S1 xor value(C2, p)

 value(CeqSC, p) = S1 = value(C2, p)

 value(CltSC, p) = S1 < value(C2, p)

 value(CgtSC, p) = S1 > value(C2, p)

 value(CleSC, p) = S1 <= value(C2, p)

 value(CgeSC, p) = S1 >= value(C2, p)

 value(CneSC, p) = S1 != value(C2, p)

 value(CovlSC, p) = value(C2, p) if S1=0

 S1 otherwise

 value(CplusCS, p) = value(C1, p) + S2

 value(CminCS, p) = value(C1, p) - S2

 value(CmultCS, p) = value(C1, p) * S2

 value(CdivCS, p) = value(C1, p) / S2

 value(CandCS, p) = value(C1, p) and S2

 value(CorCS, p) = value(C1, p) or S2

 value(CxorCS, p) = value(C1, p) xor S2

 value(CeqCS, p) = value(C1, p) = S2

 value(CltCS, p) = value(C1, p) < S2

 value(CgtCS, p) = value(C1, p) > S2

 value(CleCS, p) = value(C1, p) <= S2

 value(CgeCS, p) = value(C1, p) >= S2

 value(CneCS, p) = value(C1, p) != S2

 value(CovlCS, p) = S2 if value(C1, p)=0

 value(C1, p) otherwise

Whenever necessary, appropriate cast operations are performed on

the values prior to performing the binary value operation (cf. Sub-

clause 7.2.5).

 metadata(C3) = metadata(C1)

WCPS

 33

Example The following expression describes a coverage composed of the sum of the red, green, and blue
fields of the coverage referred to by $c:

$c.red + $c.green + $c.blue

7.1.22 rangeConstructorExpr

The rangeConstructorExpr, an n-ary induced operation, allows to build coverages with

compound range structures. To this end, coverage range field expressions enumerated are

combined into one coverage.

All input coverages must match wrt. domains and CRSs. An input coverage range field

may be listed more than once.

Requirement 31
The names of the range fields generated by the operation shall be given by the names pre-
fixed to each component expression.

Requirement 32
A rangeConstructorExpr shall be defined as below.

Let

n be an integer with n 1,

C1, …, Cn be coverageExprs with |rangeFieldNames(Ci)|=1,

f1, …, fn be fieldNames

where, for 1 i,j n,

 crs(Ci) = crs(Cj),

 domain(Ci) = domain(Cj)

 indexCrs(Ci) = indexCrs(Cj),

 indexDomain(Ci) = indexDomain(Cj).

Then,

for any coverageExpr C’

where C’ is one of

 C’a = { f1 : C1 ; … ; fn : Cn }

 C’b = struct { f1 : C1 ; … ; fn : Cn }

C’ is defined as follows:

 Coverage constituent Changed?

 identifier(C’) = ―‖ (empty string) X

 crs(C2) = crs(C1)

WCPS

34

 domain(C2) = domain(C1)

 indexCrs(C2) = indexCrs(C1)

 indexDomain(C2) = indexDomain(C1)

 interpolationSet(C2) = interpolationSet(C1)

 rangeFieldNames(C2) = (f1, …, fn) X

for all range fields fi:

 rangeFieldType(C2,fi) = rangeFieldType(Ci)
X

 nullSet(C’) = nullSet(C1) … nullSet(Cn) X

 for all p domain(C’):

 value(C’.fi,p) = value(Ci,p)

X

 metadata(C2) = metadata(C1)

Example 1: The expression below does a false color encoding by combining near-infrared, red, and green
bands into a 3-band image of 8-bit channels each, which can be visually interpreted as RGB:

struct

{ red: (char) $l.nir;

 green: (char) $l.red;

 blue: (char) $l.green

}

Example 2: The following expression transforms a greyscale image referred to by variable $g containing a

range field panchromatic into an RGB-structured image:

struct

{ red: $g.panchromatic;

 green: $g.panchromatic;

 blue: $g.panchromatic

}

7.1.23 subsetExpr

The subsetExpr element specifies spatial and temporal domain subsetting. It encom-

passes spatial and temporal trimming (i.e., constraining the result coverage domain to a

subinterval, Subclause 7.1.24), slicing (i.e., cutting out a hyperplane from a coverage,

Subclause 7.1.26), extending (Subclause 7.1.25), and scaling (Subclause 7.1.27) of a cov-

erage expression.

Requirement 33
A subsetExpr shall be either a trimmingExpr (Subclause 7.1.24) or a slicingExpr (Sub-

clause 7.1.26) or an extendExpr (Subclause 7.1.25) or a scalingExpr (Subclause 7.1.27).

WCPS

 35

All of the subsetExpr elements allow to make use of coordinate reference systems other

than a coverage‘s image CRS. A coverage‘s individual mapping from some supported

CRS coordinates to its Index CRS coordinates does not need to be disclosed by the serv-

er, hence coordinate transformation should be considered a ―black box‖ by the client.

NOTE 1 The special case that subsetting leads to a single point remaining still resembles a coverage by
definition; this coverage is viewed as being of dimension 0.

NOTE 2 Range subsetting is accomplished via the unary induced fieldExpr (cf. Subclause 7.1.20).

7.1.24 trimExpr

The trimExpr element extracts a subset from a given coverage expression along the di-

mension indicated, specified by a lower and upper bound for each dimension affected.

Interval limits can be expressed in the coverage CRS or any other CRS explicitly indi-

cated, as long as a transformation to the coverage CRS exists.

Requirement 34
In a trimExpr lower as well as upper limits shall lie inside the coverage‘s domain.

For syntactic convenience, both array-style addressing using brackets and function-style

syntax are provided; both are equivalent in semantics.

Requirement 35
A trimExpr shall be defined as below.

Let

C1 be a coverageExpr,

n be an integer with 0 n,

(lo1:hi1),…,(lon:hin) be dimensionIntervalExprs with loi hii for 1 i n.

Then,

for any coverageExpr C2

where C2 is one of

 Cbracket = C1 [p1, …, pn]

 Cfunc = trim (C1, { p1, …, pn }) (deprecated)

with

 pi is one of

 pimg,i = ai (loi : hii)

 pcrs,i = ai : crsi (loi : hii)

where each interval is within the coverage‘s bounds, as expressed by interval and

axis (possibly reprojected from a CRS indicated).

C2 is defined as follows:

Coverage constituent Changed?

WCPS

36

 identifier(C2) = ―‖ (empty string) X

 crs(C2) = crs(C1)

 domain(C2) = domain(C1) reduced to extent (loi:hii) for any do-

main axis ai (reprojected from crsi into the coverage Native CRS

if crsi is present), and with domain extent properly adjusted for

any index axis ai present in the trim list

 indexCrs(C2) = indexCrs(C1)

 indexDomain(C2) = indexDomain(C1) reduced to extent (loi:hii)

for any index axis ai (no crsi allowed in this context), and with

index extent properly adjusted for any domain axis ai present in the

trim list

X

 interpolationSet(C2) = interpolationSet(C1)

 rangeFieldNames(C2) = rangeFieldNames(C1)

 for all r rangeFieldNames(C2):

 rangeFieldType(C2,r) = rangeFieldType(Ci,r)

 nullSet(C2) = nullSet(C1)

 for all p domain(C2):

 value(C2, p) = value(C1, p)

X

 metadata(C2) = metadata(C1)

Example The following are syntactically valid, equivalent trim expressions:

$C[Long (-120: -80), Lat (-10: +10)]

7.1.25 extendExpr

The extendExpr element extends a coverage to the bounding box indicated. The new

grid points are filled with one of the coverage‘s null values.

Requirement 36
In an extendExpr if the coverage‘s null value set is empty then the server shall throw an ex-
ception.

There is no restriction on the position and size of the new bounding box; in particular, it

does not need to lie outside the coverage; it may intersect with the coverage; it may lie

completely inside the coverage; it may not intersect the coverage at all (in which case a

coverage completely filled with null values will be generated).

NOTE In this sense the extendExpr is a generalization of the trimExpr; still the trimExpr should be
used whenever the application needs to be sure that a proper subsetting has to take place.

WCPS

 37

Requirement 37
An extendExpr shall be defined as below.

Let

C1 be a coverageExpr,

n be an integer with 0 n,

a1,…,an be pairwise distinct axisNames with ai axisNameSet(C1) for 1 i n,

crs1,…,crsn be crsNames with crsi crsList(C1) for 1 i n,

(lo1:hi1),…,(lon:hin) be dimensionIntervalExprs with loi hii for 1 i n.

Then,

for any coverageExpr C2

where

 C2 = extend (C1, { p1, …, pn })

with

 pi is one of

 pimg,i = ai (loi : hii)

 pcrs,i = ai : crsi (loi : hii)

C2 is defined as follows:

Coverage constituent Changed?

 identifier(C2) = ―‖ (empty string) X

 crs(C2) = crs(C1)

 domain(C2) = domain(C1) adjusted to extent (loi:hii) for any do-

main axis ai (reprojected from crsi into the coverage Native CRS

if crsi is present), and with domain extent properly adjusted for

any index axis ai present in the trim list

X

 indexCrs(C2) = indexCrs(C1)

 indexDomain(C2) = indexDomain(C1) adjusted to extent (loi:hii)

for any index axis ai (no crsi allowed in this context), and with

index extent properly adjusted for any domain axis ai present in the

trim list

X

 interpolationSet(C2) = interpolationSet(C1)

 rangeFieldNames(C2) = rangeFieldNames(C1)

for all range fields r rangeFieldNames(C2):

 rangeFieldType(C2,r) = rangeFieldType(C1,r)

WCPS

38

 nullSet(C2) = nullSet(C1)

 for all p domain(C2):

 value(C2, p) = value(C1,p) for p domain(C1)

 value(C2, p) = n otherwise, for some n nullSet(C1)

X

 metadata(C2) = metadata(C1)

NOTE A server may decide to restrict the CRSs available on the result, as not all CRSs may be techni-
cally appropriate any more.

Example The following is a syntactically valid extend expression:

extend($c, { x (-200 : +200) })

7.1.26 sliceExpr

The sliceExpr element extracts a spatial slice (i.e., a hyperplane) from a given coverage

expression along one of its dimensions, specified by one or more slicing dimensions and

a slicing position thereon. For each slicing dimension indicated, the resulting coverage

has a dimension reduced by 1; its dimensions are the dimensions of the original coverage,

in the same sequence, with the section dimension being removed from the list. CRSs /

axes not used by any of the remaining dimensions are removed from the coverage‘s CRS

set.

Requirement 38
In a sliceExpr the slicing coordinates shall lie inside the coverage‘s domain.

For syntactic convenience, both array-style addressing using brackets and function-style

syntax are provided; both are equivalent in semantics.

Requirement 39
A sliceExpr shall be defined as below.

Let

C1 be a coverageExpr,

n be an integer with 0 n,

a1,…,an be pairwise distinct axisNames with ai axisNameSet(C1) for 1 i n,

s1,…,sn be axisPoints for 1 i n.

Then,

for any coverageExpr C2

where C2 is one of

 Cbracket = C1 [S1, …, Sn]

 Cfunc = slice(C1, , { S1, …, Sn }) (deprecated)

with

WCPS

 39

 Si is one of

 Simg,i = ai (si)

 Scrs,i = ai : crsi (si)

C2 is defined as follows:

Coverage constituent Changed?

 identifier(C2) = ―‖ (empty string) X

 crs(C2) = crs(C1) projected to the axes remaining X

 domain(C2) = domain(C1) projected to crs(C2) X

 indexCrs(C2) = m-D Index CRS where m=dimension(C1)-n

 indexDomain(C2) = indexDomain(C1) projected to the axes re-

maining in indexCrs(C2)

 interpolationSet(C2) = interpolationSet(C1)

 rangeFieldNames(C2) = rangeFieldNames(C1)

 for all r rangeFieldNames(C2):

 rangeFieldType(C2,r) = rangeFieldType(C1,r)

 nullSet(C2) = nullSet(C1)

 for all p domain(C1) :

 value(C2, p) = value(C1,p’) where p’is the projection of p to

crs(C2)

 metadata(C2) = metadata(C1)

Example The following are syntactically valid, equivalent slice expressions:

$c[Lat (120)]

The slicing axes can be taken from both the coverage‘s CRS or grid CRS (its underlying

Index CRS), also in a mixed fashion, however every axis may be used only once in a slic-

ing expression, and the ―twin‖ axis cannot appear simultaneously in the same slicing op-

eration.

Example Let a 3D datacube be given with axes Lat, Long, and date together with the corresponding grid
index axes i, j, and k. Then, slicing in Lat, Long, and k is possible in one operation.

Using a grid index axis in a slicing operation is only applicable for coverages where do-

main and grid axes names are disjoint so that no ambiguity occurs.

WCPS

40

Requirement 40
In a sliceExpr axes from the coverage‘s index CRS shall be used only in case the same name
is not used for any axis in the CRS of the coverage.

Example A datacube C with axes (k,Lat,Long) having grid index axes (i,j,k) cannot be sliced in k.

7.1.27 scaleExpr

The scaleExpr element reduces resolution while leaving the geographic extent un-

changed. There are three different variants:

 Scaling to a target extent (i.e., number of grid points along each axis selected)

 Scaling by factors applied individually to axes selected

 Scaling by a factor applied to all axes.

NOTE Scaling regularly involves range interpolation, hence numerical effects have to be expected.

Requirement 41
A scaleExpr1 shall be defined as below.

Let

C1 be a coverageExpr with only index and regular grid axes,

m, n be integers with 0 m and 0 n,

a1,…,am be pairwise distinct axisNames with ai indexCrs(C1) for 1 i m,

Ii be intervalExprs for 1 i m which evaluate to pairs loi, hii with loi hii,

im interpolationSet(C1) be an interpolationMethod.

Then,

For any coverageExpr C2,

where

 C2 = scale (C1, { a1 (I1), …, am (Im) } [, im])

C2 is defined as follows:

Coverage constituent Changed?

 identifier(C2) = ―‖ (empty string) X

 crs(C2) = crs(C1)

 domain(C2) = domain(C1)

 indexCrs(C2) = indexCrs(C1)

WCPS

 41

 indexDomain(C2) = X1 … Xd where Xi = Ii for axis ai X

 interpolationSet(C2) = interpolationSet(C1)

 rangeFieldNames(C2) = rangeFieldNames(C1)

 for all r rangeFieldNames(C2):

 rangeFieldType(C2,r) = rangeFieldType(C1,r)

 nullSet(C2) = nullSet(C1)

 for all p domain(C2):

 value(C2, p) is obtained by rescaling the coverage grid along

dimensions ai such that the coverage‘s extent along dimension ai

is set to (loi:hii), expressed in the coverage‘s Index CRS; all oth-

er dimensions remain unaffected.

If im is specified then this method is used for interpolation, other-

wise it is system-dependent.

X

 metadata(C2) = metadata(C1)

Example The following expression performs x/y scaling of some coverage referenced by variable $C

using interpolation type cubic in both x and y dimension. Note that $C might have other axes, such as

time, which would remain unaffected.

scale($C, { x (100 : 200) , y (300 : 400) }, cubic)

Requirement 42
A scaleExpr2 shall be defined as below.

Let

C1 be a coverageExpr with only index and regular grid axes,

m, n be integers with 0 m and 0 n,

a1,…,am be pairwise distinct axisNames with ai indexCrs(C1) for 1 i m,

Ii be indexExprs for 1 i m,

im interpolationSet(C1) be an interpolationMethod.

Then,

For any coverageExpr C2,

where

 C2 = scale (C1, { a1 (I1), …, am (Im) } [, im])

C2 is defined as follows:

WCPS

42

Coverage constituent Changed?

 identifier(C2) = ―‖ (empty string) X

 crs(C2) = crs(C1)

 domain(C2) = domain(C1)

 indexCrs(C2) = indexCrs(C1)

 indexDomain(C2) = X’1 … X’d where X’i=(loi/Ii, hii/Ii)

for axis ai where Xi=(loi, hii) is the extent in indexDomain(C1)

and is unchanged over indexDomain(C1) otherwise

X

 interpolationSet(C2) = interpolationSet(C1)

 rangeFieldNames(C2) = rangeFieldNames(C1)

 for all r rangeFieldNames(C2):

 rangeFieldType(C2,r) = rangeFieldType(C1,r)

 nullSet(C2) = nullSet(C1)

 for all p domain(C2):

 value(C2, p) is obtained by rescaling the coverage grid along

dimensions ai such that the coverage‘s extent along dimension ai

is set to (loi:hii), expressed in the coverage‘s Index CRS; all oth-

er dimensions remain unaffected.

If im is specified then this method is used for interpolation, other-

wise it is system-dependent.

X

 metadata(C2) = metadata(C1)

Requirement 43
A scaleExpr2 shall be defined as below.

Let

C1 be a coverageExpr with only index and regular grid axes,

s be a scalarExpr,

im interpolationSet(C1) be an interpolationMethod.

Then,

For any coverageExpr C2,

where

 C2 = scale (C1, s [, im])

C2 is defined as follows:

WCPS

 43

Coverage constituent Changed?

 identifier(C2) = ―‖ (empty string) X

 crs(C2) = crs(C1)

 domain(C2) = domain(C1)

 indexCrs(C2) = indexCrs(C1)

 indexDomain(C2) = X’1 … X’d where X’i=(loi/s, hii/s) for

all axes

X

 interpolationSet(C2) = interpolationSet(C1)

 rangeFieldNames(C2) = rangeFieldNames(C1)

 for all r rangeFieldNames(C2):

 rangeFieldType(C2,r) = rangeFieldType(C1,r)

 nullSet(C2) = nullSet(C1)

 for all p domain(C2):

 value(C2, p) is obtained by rescaling the coverage grid along

dimensions ai such that the coverage‘s extent along dimension ai

is set to (loi:hii), expressed in the coverage‘s Index CRS; all oth-

er dimensions remain unaffected.

If im is specified then this method is used for interpolation, other-

wise it is system-dependent.

X

 metadata(C2) = metadata(C1)

7.1.28 crsTransformExpr

The crsTransformExpr element performs reprojection of a coverage from its Native

CRS into another one; the dimension of the coverage as well as the axis types (such as

regular vs. irregular) remains unchanged whereas axes and range values generally change.

For the interpolation and resampling which usually is incurred the interpolation method to

be applied can be indicated optionally.

NOTE 1 This changes the range values (e.g., pixel radiometry).

NOTE 2 A service may refuse to accept some CRS combinations.

Requirement 44
A crsTransformExpr shall be defined as below.

Let

WCPS

44

C1 be a coverageExpr,

crs be a crsName,

it interpolationSet(C1) be an interpolationMethod.

Then,

for any coverageExpr C2

where

 C2 is one of:

 C2a = crsTransform(C1 , crs)

 C2b = crsTransform(C1 , crs , it)

C2 is defined as follows:

Coverage constituent Changed?

 identifier(C2) = ―‖ (empty string) X

 crs(C2) = crs X

 domain(C2) = domain(C1) X

 indexCrs(C2) = indexCrs(C1)

 indexDomain(C2) is determined by the reprojection of C1 to crs X

 interpolationSet(C2) = interpolationSet(C1)

 rangeFieldNames(C2) = rangeFieldNames(C1)

for all range fields r rangeFieldNames(C2):

 rangeFieldType(C2,r) = rangeFieldType(C1,r)

 nullSet(C2) = nullSet(C1)

 for all p domain(C2):

 value(C2,p) is obtained by reprojecting coverage C1 from its

Native CRS into CRS crs. If some interpolation is prescribed this

will be applied whenever interpolation and resampling occurs; oth-

erwise, choice of the interpolation method is implementation de-

pendent.

X

 metadata(C2) = metadata(C1)

Example The following expression transforms coverage $c (which is assumed to be 2D) into the CRS

identified by EPSG:3035.

crsTransform($c, “EPSG:3035”)

WCPS

 45

7.1.29 coverageConstructorExpr

The coverageConstructorExpr element allows creating a d-dimensional coverage for

some d 1.

The coverage is Cartesian (without any georeference), its Native CRS is identical to its

grid CRS. The domain definition consists, for each axis, of a unique axis name plus lower

and upper bound of the coverage, expressed in the Index CRS of matching dimension and

using integer coordinates.

NOTE Index CRS axes, as per OGC CRS definitions, are named i, j, k, etc.

The coverage‘s content is defined by an expression which gets evaluated for each direct

position of the coverage‘s domain. Such expressions may contain occurrences of the cur-

rent direct position coordinates, allowing to define position-dependent expressions (see

examples below). The expression‘s type determines the overall coverage range type.

This coverage has no null values and interpolation methods associated. Finally, metadata

are empty.

NOTE This constructor is useful

 whenever the coverage is too large to be described as a constant or

 when the coverage's range values are derived from some other source (such as in the course of a
histogram computation, see example below).

Requirement 45
A coverageConstructorExpr shall be defined as below.

Let

id be a stringConstant,

d be an integer with d>0,

axisi be pairwise distinct axisNames for 1 i d2,

namei be pairwise distinct variableNames for 1 i d, which additionally, in the

request on hand, are not used already as a variable in this expression‘s scope,

Ii be intervalExprs for 1 i d which evaluate to pairs loi, hii with loi hii,

V be a scalarExpr possibly containing occurrences of namei.

Then,

For any coverageExpr C

where

 C = coverage id
 over name1 axis1 (I1),

2 In the future, introduction of a GeneralDomain concept is planned for WCS which, among others, will allow an arbi-
trary number of so-called ―abstract axes‖, i.e., axes without spatio-temporal semantics. More than one dimension of this
type will be allowed.

WCPS

46

 …,

 named axisd (Id)

 values V

C is defined as follows:

Coverage constituent Changed?

 identifier(C) = id X

 crs(C) = IndexND where N=d X

 domain(C) = I1 … Id
X

 indexCrs(C) = IndexND where N=d X

 indexDomain(C,a) = I1 … Id X

 interpolationSet(C) = {} X

 rangeFieldNames(C) = { “band0” } X

 rangeFieldType(C,f) = type of V

 i.e., the range field‘s type, which must be one of the atomic types

supported by this standard, is the result type of expression V

X

 nullSet(C) = {} X

 for all p =(p1,…,pd) domain(C):

 value(C,p) = V‘

where expression V’ is obtained from expression V by substituting

all occurrences of namei by pi

X

 metadata(C2) = ―‖ (empty string)

Example The expression below represents a 2-D greyscale image with a diagonal shade from white to
black (the cast operator forces the floating point division result into an integer):

coverage greyshade

over $pi i (0 : 255),

 $pj j (0 : 255)

values (unsigned char) ($pi + $pj) / 2

Example The expression below computes a 256-bucket histogram over band b of some coverage $C of

unknown domain and dimension:

Let $X : =

coverage histogram

over $bucket i (0 : 255)

values count($C.b = $bucket)

WCPS

 47

NOTE 1 To fully exploit the opportunities of CIS 1.1 it is recommended to instead use the modern
xWCPS coverage constructor (see Subclause 8.2.5).

NOTE 2 As the axis names of Native and Grid CRS combined are not unambiguous it is not possible to
use subsetting and scaling on such a coverage.

7.1.30 coverageConstantExpr

The coverageConstantExpr element allows creating a d-dimensional coverage, for some

d 1, having one range field component with point values immediately given in the ex-

pression.

The coverage is Cartesian (without any georeference), its Native CRS is identical to its

grid CRS. The domain definition consists, for each axis, of a unique axis name plus lower

and upper bound of the coverage, expressed in the Index CRS of matching dimension and

using integer coordinates.

NOTE Index CRS axes, as per OGC CRS definitions, are named i, j, k, etc.

The coverage‘s content is defined by the sequence of values provided. The expression‘s

type determines the overall coverage range type.

This coverage has no null values and interpolation methods associated. Finally, metadata

are empty.

Requirement 46
In a coverageConstantExpr the range type shall be given by the narrowest range type en-
compassing all (atomic or record) values encountered. If the number of range components or

their type turns out incompatible for any two points, or if the number of point values pro-

vided does not match with the domain extent specified, then the server shall respond with an
exception.

This coverage has no other CRS associated beyond the abovementioned image CRS; fur-

ther, it has no null values and interpolation methods associated. Finally, all other metada-

ta are undefined. To set specific metadata for this new coverage the setComponentExpr

(Subclause Error! Reference source not found.) is available.

NOTE This constructor is useful for supplying a small-sized constant coverage, such as a filter kernel.

Requirement 47
A coverageConstantExpr shall be defined as below.

Let

id be a stringConstant,

d be an integer with d>0,

Ii be intervalExprs for 1 i d which evaluate to pairs loi, hii with loi hii,

c1,…, cm be constants where m=|indexDomain(C)| is the product of all d axis ex-

tents and all ci have a common type supported by this standard.

WCPS

48

Then,

For any coverageConstantExpr C

where

 C = coverage id
 over axis1 (I1),

 …,

 axisd (Id)

 values < c1,…, cm >

where

 Ii = loi : hii

C is defined as follows:

Coverage constituent Changed?

 identifier(C) = id X

 crs(C) = IndexND where N=d X

 domain(C) = I1 … Id X

 indexCrs(C) = IndexND where N=d X

 indexDomain(C) = I1 … Id X

 interpolationSet(C) = {} X

 rangeFieldNames(C) = (“band0”) X

 for r rangeFieldNames(C):

 rangeFieldType(C,r) = type of ci

i.e., the range field‘s type is equal to the type of the values provided

X

 nullSet(C) = {} X

 for all p domain(C):

 value(C, p) is determined by assigning each value ci in turn to

a grid point location, whereby assignment proceeds in row-major

order (per dimension from the lowest to the highest coordinate, and

loops over the grid points with the first axis listed as outermost

loop, the next axis listed as next-to-outermost loop, etc., and the

last axis listed as innermost loop).

X

 metadata(C2) = ―‖ (empty string) X

WCPS

 49

Example For a Sobel filter, a 3x3 filter kernel can be provided by the expression below. The range value
of matrix element (-1/-1) is 1, the value at position (0/-1) is 2, etc.

coverage Sobel3x3

over i (-1 : +1),

 j (-1 : +1)

values < 1; 2; 1;

 0; 0; 0;

 -1; -2; -1

 >

7.1.31 condenseExpr

Requirement 48
A condenseExprshall be either a reduceExpr (see Subclause7.1.33) or a generalCondense-

Expr (see Subclause 7.1.32).

It takes a coverage and summarizes its values using some summarization function. The

value returned is scalar, i.e.: a single scalar value or a record of values, reflecting the

number of the input coverage‘s range type components.

Requirement 49
In a condenseExpr whenever one of the point values (―pixels‖, etc.) participating in a con-
dense operation is equal to one of the null values of its coverage then the result of the opera-

tion shall be one of the values in the coverage‘s null value set.

7.1.32 generalCondenseExpr

The general generalCondenseExpr consolidates the grid point values of a coverage

along selected dimensions to a scalar value based on the condensing operation indicated.

It iterates over a given domain while combining the result values of the scalarExprs

through the condenseOpType indicated. Admissible condenseOpTypes are the binary

operations +, *, max, min, and, and or.

Requirement 50
A generalCondenseExpr shall be defined as below.

Let

op be a condenseOpType,

n be some integer with n 0,

d be some integer with d>0,

axisi be axisNames for 1 i d,

namei be pairwise distinct variableNames for 1 i d which, in the request on

hand, are not used already as a variable in this expression‘s scope,

Ii be intervalExprs for 1 i d which evaluate to pairs loi, hii with loi hii,

Cj be coverageExprs for 1 j n,

P be a booleanExpr possibly containing occurrences of namei and Cj,

V be a scalarExpr or coverageExpr possibly containing occurrences of namei

WCPS

50

and Cj,

N be a neutral element of type(V)

where

 1 i d.

Then,

For any scalarExpr S

where S is one of

 S’ = condense op

 over name1 axis1 (I1),

 …,

 named axisd (Id)

 [where P]
 using V

 S” = condense op

 over axis1 (I1),

 …,

 axisd (Id)

 [where P]
 using V

S is constructed as follows (for S”, substitute namei by axisi):

S := N;

for all name1 {lo1,… ,hi1}

 for all name2 {lo2,… ,hi2}
 …

 for all named {lod,… ,hid}

 if (filtering expression P is present)

 then

 let predicate P’ be obtained from evaluating expression

 P by substituting all occurrences of namei by its current

 value where namei occurring in a coordinate position

 of Cj are coordinates in the index CRS of Cj

 else

 P‘ = true;

 fi

 if (P‘)

 then

 let V’ be obtained from evaluating expression V

 by substituting all occurrences of namei by its current

 value where namei occurring in a coordinate position

 of Cj are as coordinates in the image CRS of Cj where

 possible excess dimensions in a coverageExpr are

 treated as in induced operations;

WCPS

 51

 S := S op value(V‘)

 fi

 endfor

 …

 endfor

 endfor

return S

NOTE 1 Condensers are heavily used, among others, in these two situations:

 To collapse Boolean-valued coverage expressions into scalar Boolean values so that they can be
used in predicates.

 In conjunction with the coverageConstructorExpr (see Subclause 7.1.29) to phrase high-level
imaging, signal processing, and statistical operations.

NOTE 2 The additional expressive power of condenseExpr over reduceExpr is twofold:

 A WCPS implementation may offer further summarisation functions, as long as these form a mon-
oid, i.e.: they are commutative and associative and have a neutral element.

 The condenseExpr gives explicit access to the coordinate values; this makes summarisation con-
siderably more powerful (see example below).

Example For a filter kernel k, the condenser must summarise not only over the grid point under inspec-

tion, but also some neighbourhood. The following applies a 3x3 filter kernel to band b of some coverage

$c with extent x0…x1/y0…y1; note that the result image is defined to have an x and y dimension.

coverage filteredImage

over $pi i (x0 : x1),

 $pj j (y0 : y1)

values condense +

 over $ki i (-1 : +1),

 $kj j (-1 : +1)

 using $C[$ki+$pi, $kj+$pj] * k[$ki, $kj]

where k is a 3x3 matrix like

1 2 1

0 0 0

-1 -2 -1

Starting WCPS 1.1 this example can be also written as:

coverage filteredImage

over x (x0 : x1),

 y (y0 : y1)

values condense +

 over i (-1 : +1),

 j (-1 : +1)

 using $C[x+i , y+j] * k[i, j]

WCPS

52

NOTE See coverageConstantExpr for a way to specify the k matrix in the query.

7.1.33 reduceExpr

A reduceExpr element derives a summary value from the coverage passed; in this sense

it ―reduces‖ a coverage to a scalar value.

Requirement 51
A reduceExpr shall be either an add, avg, min, max, count, some, or all operation as

per Table 3.

Table 3 – reduceExpr definition via generalCondenseExpr

reduceExpr definition3 Meaning

add($a) =

 condense +

 over $p1 D1(indexDomain($a,D1)),

 …,

 $pd Dd(indexDomain($a,D1)),

 using $a[$p1 , …, $pd]

sum over all points in $a

avg($a) =

 add($a) / | indexDomain($a) |
Average of all points in $a

min($a) =

 condense min

 over $p1 D1(indexDomain($a,D1)),

 …,

 $pd Dd(indexDomain($a,D1))

 using $a[$p1 , …, $pd]

Minimum of all points in $a

max($a) =

 condense max

 over $p1 D1(indexDomain($a,D1)),

 …,

 $pd Dd(indexDomain($a,D1))

 using $a[$p1 , …, $pd]

Maximum of all points in $a

count($b) =

 condense +

 over $p1 D1(indexDomain($b,D1)),

 …,

 $pd Dd(indexDomain($b,D1))

 where $b[$p1 , …, $pd]

 using 1

Number of points in $b

some($b) =

 condense or
is there any point in $b bwith

3 $a is assumed to evaluate to a coverage with a single numeric range field, $b to a coverage with a single Boolean
range field.

WCPS

 53

 over $p1 D1(indexDomain($b,D1)),

 …,

 $pd Dd(indexDomain($b,D1))

 using $b[$p1 , …, $pd]

value true?

all($b) =

 condense and

 over $p1 D1(indexDomain($b,D1)),

 …,

 $pd Dd(indexDomain($b,D1))

 using $b[$p1 , …, $pd]

do all points of $b have value

true?

7.2 Expression evaluation

This Sublause defines additional rules for ProcessCoverages expression evaluation.

7.2.1 Evaluation sequence

Requirement 52
A processingExpr shall evaluate coverage expressions from left to right.

7.2.2 Nesting

Requirement 53
A processingExpr shall allow nesting all operators, constructors, and functions arbitrarily,
provided that each sub-expression's result type matches the required type at the position

where the sub-expression occurs. This holds without limitation for all arithmetic, Boolean,
String, and coverage-valued expressions.

7.2.3 Parentheses

A processingExpr may contain parentheses to enforce a particular evaluation sequence.

Requirement 54
Parentheses enforcing evaluation sequence in a processingExpr shall be defined as below.

Let

C1 and C2 be coverageExprs

Then,

For any coverageExpr C2

where

 C2 = (C1)

C2 is defined as yielding the same result as C1.

WCPS

54

Example $c * ($c > 0)

7.2.4 Operator precedence rules

Requirement 55
In case of ambiguities in the syntactical analysis of a request, operators shall have the follow-
ing precedence (listed in descending strength of binding):

 Range field selection, trimming, slicing

 unary –

 unary arithmetic, trigonometric, and exponential functions

 *, /

 +, -

 <, <=, >, >=, !=, =

 and

 or, xor

 : (interval constructor), condense, marray

 overlay

In all remaining cases evaluation shall be done left to right.

7.2.5 Range type compatibility and extension

A range type t1 is said to be cast-compatible with a range type t2 iff the following con-

ditions hold:

 Both range types, t1 and t2, have the same number of field elements, say d;

 For each range field element position i with 1 i d, the ith range field type f1,i

of t1 is cast-compatible with the ith range field type f2,i of t2.

A range field type f1 is said to be cast-compatible with a range field type f2 iff f2 can be

cast to f1, whereby casting of f2 to f1 is defined as looking up f2 in Table 4 and replac-

ing it by its right-hand neighbour type or, if it is the last type in line, by the first type of

the next line. This is repeated until either f1 is matched, or the end of the Table 4 is

reached. Type f1 can be cast to type f2 if the casting procedure terminates with finding

t2, otherwise the cast is not possible.

Requirement 56
Extending boolean shall map false to 0 and true to 1.

WCPS

 55

Requirement 57
On both arguments to binary operations type extension shall be applied as per Table 4 until

both argument types are equal; if such a common type can be found, then this shall be the

binary operation result type; otherwise, an exception shall be thrown.

Example For three single-field coverages $F, $I, and $B with range types float, integer, and

boolean, resp., the result type of the following expression is float:

$F + $I + $B

Table 4 – Type extension sequence.

Type extension rules

boolean > char

char > boolean

boolean > unsigned char

unsigned char > boolean

char > short

char > unsigned short

unsigned char > short

unsigned char > unsigned short

short > int

short > unsigned int

unsigned short > int

unsigned short > unsigned int

int > long

int > unsigned long

unsigned int > long

unsigned int > unsigned long

long > float

float > double

float > complex

double > complex2

complex > complex2

complex char > complex short

complex short > complex int

complex int > complex long

complex long > complex2

complex2 > complex long

Requirement 58 The type of each of the operands of a multiplicative operator (+, -, *, /)

shall be a type that can be extended to a numeric numeric type, or an exception otherwise.
The type of a multiplicative expression is the extended type of its operands. If this promoted

type is an integer type, then integer arithmetic shall be performed; if this promoted type is a

floating-point type, then floating-point arithmetic shall be performed; if this promoted type is
a complex type, then complex arithmetic shall be performed.

NOTE Explicit and implicit casts should be used with caution, as unintended consequences can arise.
Data can be lost when floating-point representations are converted to integral representations as the frac-

WCPS

56

tional components of the floating-point values will be truncated (rounded down). Conversely, converting
from an integral representation to a floating-point one can also loose precision, since the floating-point type
may be unable to represent the integer exactly (for example, float might be an IEEE 754 single precision
type, which cannot represent the integer 16777217 exactly, while a 32-bit integer type can). This can lead to
situations such as storing the same integer value into two variables of type int and type float which return
false if compared for equality.

Requirement 59
Whenever rounding from floating-point to integer numbers is required, rounding towards ze-

ro shall be applied.

Example For a Boolean single-field coverage $b, and an integer single-field coverage $i, the following

expression will evaluate to some integer value:

count($i * $b)

Requirement 60
Before executing any binary operation where the two operands are of different type a cast

operation shall be attempted to achieve equal types. The result type of each of the binary in-

duced operations (see Section 0) addition, subtraction, multiplication, and division shall be
equal to the common type of the input operands.

Requirement 61
If a cast is attempted or implicitly needed, but not possible according to the rules of this stan-

dard then an exception shall be reported.

NOTE The cast operation is similar to that found in many programming languages, such as C/C++.

7.3 Evaluation exceptions

Requirement 62
Whenever a coverage expression cannot be evaluated according to the rules specified in

Clauses 7.1 and 7.2, evaluation shall respond with an exception.

Example The following expressions will lead to an exception when used in a ProcessCoverages request
(reasons: division by zero; illegal trigonometric argument):

$C / 0

arcsin(2)

7.4 processCoveragesExpr response

The response to a request sending a processCoveragesExpr is one of the following:

Requirement 63
Depending on its result type, the normal result of evaluating a valid WCPS query shall con-
sist of one of the following alternatives:

 A (possibly empty) list of coverages.

WCPS

 57

 A (possibly empty) list of scalars (where scalar summarizes all non-coverage type

data, such as numbers, strings, URLs) or of records of scalars.

 An exception.

Encoding of single coverages is governed by the encodeCoverageExpr (see Section

7.1.4). Encoding of scalar structures and exceptions as well as the representation of the

overall response is be governed by a separate, additional protocol specification, WCS

Processing [OGC 08-059r3], which specifies a response protocol suitable for WCPS re-

sults.

WCPS

58

8 xWCPS

8.1 Overview

This Clause defines further WCPS functionality for OGC CIS 1.1 coverages, informally

named xWCPS. Due to the wide range of coverage types CIS 1.1 supports (GeneralGrid-

Coverage, RectifiedGridCoverage, ReferenceableGridCoverage, and subtypes thereof) a

generic mechanism is established for extracting components from such coverages, as well

as composing such coverages. This mechanism is based on XPath expressions operating

on the structure of a coverage as defined in its XML schema.

NOTE Due to the schema agnostic nature of XPath it is not tied to any particular XML schema, and
not even to XML itself. Based on these capabilities it is planned in future to support XPath operations also
on the JSON schema, and on other suitable encodings of coverages.

An xWCPS expression may coverage, metadata, or combined expressions by integrating

XPath into WCPS. This allows serving and querying data assets combined from data and

metadata, even ―reverse lookups‖ where the server evaluates predicates on coverage data

and returns only pertaining metadata requested.

8.2 xWCPS language elements

An xWCPS query consists of an xWcpsExpr.

Requirement 64
Syntax and semantics of an xWcpsExpr shall be given by a WCPS processCoveragesExpr

potentially in addition containing letExprs, xpathExprs, xWcpsCoverageConstructor-

Exprs, decodeCoverageExprs, switchExprs.

NOTE Requirement counting starts with 1 because at the time of WCPS 1.0 writing the requirements
scheme was not yet established. In this WCPS 1.1 document, all normative language is considered a formal
requirement.

8.2.1 letExpr

The xWCPS let clause, adopted from W3C XQuery, declares a named constant (in

XPath, not quite correctly, named variable) and gives it a value. In most cases, named

constants are used purely for convenience, to simplify the expressions and make the code

more readable.

Example The following statement defines a constant of name $timeAxis with value ―date‖.

let $timeAxis := “date”

In a let clause the named constant only takes one value. This can be a single item or a

sequence (there is no real distinction — an item is just a sequence of length one), and the

sequence can contain nodes, or atomic values, or (beware!) a mixture of the two.

WCPS

 59

NOTE Named constants cannot be updated – something like let $x:=$x+1 is not allowed. More
specifically, it will not lead to an evaluation error, but the result will not be as expected (cf. XPath latera-
ture). This rule might seem very strange if you are expecting WCPS to behave in the same way as proce-
dural languages such as JavaScript or python. But WCPS isn't that kind of language, it's a declarative lan-
guage and works at a higher level. This constraint is essential to give optimizers the chance to find execu-
tion strategies that can search vast databases in fractions of a second. SQL, XSLT, and XQuery users have
found that this declarative style of programming grows on you. You start to realize that it enables you to
code at a higher level: you tell the system what results you want, rather than telling it how to go about con-
structing those results.

A xWCPS expression can have any number of let clauses, and they can be in any order

except that variables have to be defined before used. If a let clause contains multiple vari-

ables, it is semantically equivalent to multiple let clauses, each containing a single vari-

able.

Example The following statement:

let $timeAxis := “date”

let $latAxis := “Lat”

 is equivalent to:

let $timeAxis := “date”, $latAxis := “Lat”

Requirement 65
Syntax and semantics of a letExpr shall be given as follows.

Let

m,n 1 be natural numbers,

c1, … cm, be n pairwise different variableNames,

e1, … em, be n+m optional coverageExprs or scalarExprs or bracket-enclosed in-

tervalExprs,

c be a coverageExpr or scalarExpr,

where every ci must be defined before used in an expression.

Then,

for any xWcpsExpr X

where

 X = for v1 in (L1),
 v2 in (L2),

 … ,

 vn in (Ln)

 [let c1 := e1, …, cm := em]

 [where b]
 return P

the result of evaluating X is defined by substituting all occurrences of ci in X by ei

and then evaluating the expanded X expression.

Example 1 The following xWCPS query:

WCPS

60

for $C in (myCoverage)

let $factor := 10

return encode(scale($C, $factor), “image/tiff”)

 …is equivalent to:

for $C in (myCoverage)

return encode(scale($C, 10), “image/tiff”)

Example 2 Regions (such as for subsetting) can be extracted conveniently:

for $C in (myCoverage)

let $subset := [Lat(10:20), Long (30:40)]

return max($C [$subset])

8.2.2 xpathExpr

W3C XPath expressions are syntactically allowed at any position. Semantically, the result

of evaluating the expression must match with the context requirements.

Requirement 66
An xWCPS query consists of WCPS express may contain occurrences of variables defined in
the scope of the XPath expression.

Requirement 67
An XPath expression in an xWCPS query may contain occurrences of variables defined in
the scope of the XPath expression.

Example The following interleaving of WCPS and XPath is valid on some GeneralGridCoverage $C:

 $C/domainSet/GeneralGrid/RegularAxis[@axisLabel=$a]

Requirement 68
In a context requiring coverages or constituents thereof the result of evaluating an XPath ex-

pression in an xWCPS query shall be interpreted as given by the CIS XML schema pertain-
ing to the particular coverage type on hand.

Example For composing some CIS 1.1 GeneralGridCoverage through an xWCPS coverage constructor
an XPath expression may contribute the range set; in this case, the result of the XPath evaluation must be a
valid CIS 1.1 GeneralGridCoverage range set as per the XML schema.

A WCPS server may refuse to evaluate some expressions, in particular if the volume of

intermediate or result data would exceed some internal limits. A typical example is re-

trieval of the complete range set.

Example For some coverage $C, the XPath expression $C/GeneralGrid/@srsName evaluates to

the contents of the srsName attribute in the coverage‘s domain set.

NOTE XPath can be used to extract any part of a coverage. For example, the following expressions
evaluate to components of coverage $C:

WCPS

 61

 $C/domainSet

 $C/rangeType

 $C/rangeSet

 $C/metadata

8.2.3 xWcpsCoverageConstructorExpr

The xWcpsCoverageConstructorExpr element creates a d-dimensional coverage of

some given type for some d 1 by defining the coverage‘s domain set, range type, range

set, and metadata through expressions. This allows creating entirely new shapes, dimen-

sions, and values – see the examples below.

NOTE This constructor is adjusted to CIS coverages, as opposed to the original coverage constructor
(Subclause 7.1.29), and substantially more powerful than this older constructor, therefore using the new
constructor is recommended.

The CIS coverage types supported by this standard are RectifiedGridCoverage, Referen-

ceableGridCoverage, and GeneralGridCoverage, or some subtype thereof. GeneralGrid-

Coverage can express any grid type and axis type combination, for the other types some

constraints apply.

Requirement 69
In a xWcpsoverageConstructorExpr a RectifiedGridCoverage shall contain only axes of

type index and regular; a ReferenceableGridCoverage shall contain only axes of type index,
regular and irregular.

The coverage domain set is built from a Coordinate Reference System (CRS) defining the

multi-dimensional axes and the meaning of coordinates, including units of measure; indi-

cating the coordinates of the direct positions, i.e., the points where values sit.

Axis names can be chosen according to the rules of CIS 1.1; it is recommended to keep

Native CRS and grid CRS axis names disjoint.

A range type expression optionally creates the coverage range type. In the scope of the

embedding WCPS condensers this expression defines the range component names as

known (immutable) variables. Values derived for some such range component will auto-

matically be cast to the target type (in SWE Common terminology: ―quantity‖) of that

range component.

A range set expression creates the coverage range set. A scalarExpr is evaluated at every

direct position of the coverage‘s domain set.

An optional metadata expression creates the coverage metadata component. As such me-

tadata are not interpreted by the coverage they are represented as a string which may con-

tain any character, depending on the character set supported (which is out of scope of this

standard).

WCPS

62

8.2.3.1 Coverage Constructor

Requirement 70
A xWcpsCoverageConstructorExpr shall be defined as follows.

Let

t be an identifier which is either a coverage type defined in CIS or a coverage

type validly derived from those,

id be an identifier,

D be a domainSetExpr,

T be a rangeTypeExpr,

R be a rangeSetExpr,

M be a metadataExpr.

Where

C is a xWcpsCoverageConstructorExpr

with

 C = coverage t id [D] [T] R [M]

8.2.3.2 Domain Set

Let further

d be an integer with d>0,

c be a crsName representing a d -dimensional CRS,

ai be pairwise distinct variableNames for 1 i d,

axisi be pairwise distinct axisNames for 1 i d,

iei,1, iei,2 be integer-valued indexExprs for 1 i d with iei,1 ≤ iei,2,

cei,1, cei,2 be indexExprs for 1 i d, which are valid coordinates for axis i as

per CRS c with cei,1 ≤ cei,2,

resi be indexExprs with res1<…<resd for 1 i d valid for the i
th

 axis as per
c,

xei,1,… be indexExprs for 1 i d, which are valid coordinates for axis axisi

as per CRS c with xei,1 < xei,2 <…,

im1,…, imm be interpolationMethods for 1 i m with m>0.

Where

D is a domainSetExpr

with

 D = domain set
 crs c with

 axis1 axisdef1 ,

 … ,
 axisd axisdefd

WCPS

 63

 [, interpolation im1,…, imm]

and axisdefi is one of

 axisdefi,index = index (iei,1 : iei,2)

 axisdefi,regular = regular (cei,1 : cei,2) resolution resi
 axisdefi,irregular = irregular (xei,1 , … , xei,n)

D is defined as a domain set of CRS c with axis types as indicated and axis extents

per CRS axis as indicated. Axis names used in the domainSetExpr shall be matched

pairwise against the CRS axes based on their order of occurrence in the expression.

The axis names axisi are made available in the current context for use as iteration

variables in the range set computation where coordinate values get bound to each di-

rect position in turn allowing to inspect each direct position of the coverage. Howev-

er, this is only admissible for index axes (see below).

8.2.3.3 Range Type

Let further

n be an integer with d>0,

f1,…, fn be fieldNames,

t1,…, tn be rangeTypes,

nil1,1,…, nili,1,…, niln,1,…, be constants compatible with type qi.

Where

T is a rangeTypeExpr

with

 T = range type

 f1 : t1 [nil nil1,1, …] ,
 …

 fn : tn [nil niln,1, …]

NOTE DataRecords in SWE Common, on which the CIS range type relies, define several more com-
ponents which, however, have turned out to be unused in WCPS practice. Hence, there is a restriction to the
practically relevant parts leaving other parts implementation dependent. A future version of this standard
may add definitions for further SWE DataRecord components.

8.2.3.4 Range Set

Let further

r be a scalarExpr possibly containing occurrences of direct position indicators as

defined in D and range component identifiers defined in T.

Where

WCPS

64

R is a rangeSetExpr

with

 R = range set r

8.2.3.5 Metadata

Let further

m be a stringExpr

Where

M is a metadataExpr

with

 M = metadata m

NOTE If the metadata value resembles valid XML or JSON then XPath can address into these data.

8.2.3.6 Coverage Constructor Semantics

Then,

C is defined as a coverage of type t as follows:

Coverage constituent Changed?

 identifier(C) = id X

 crs(C) = c if D is present,

or the Native CRS resulting from evaluating r otherwise
X

 domain(C) = domain extent resulting from evaluating D,

or the domain extent resulting from evaluating r otherwise
X

 indexCrs(C) = d-dimensional Index CRS if D is present,

or the Index CRS resulting from evaluating r otherwise
X

 indexDomain(C) = I1 … Id if D is present,

or the index domain extent resulting from evaluating r otherwise.

Where the Ii are defined as:

 if Ii is index axis then I1= [0:iei,2-iei,1]

 if Ii is regular axis then Ii= [0:(cei,2-cei,1)/resi]

 if Ii is irregular axis then Ii =[0:|{xei,1 ,…,xei,n}|-1]

X

 interpolationSet(C) = { im1,…, imm } if D is present,

or the empty set {} otherwise
X

 rangeFieldNames(C) = (f1,…, fn) if T is present, X

WCPS

 65

or the range field names resulting from evaluating r otherwise

for all range fields fi: rangeFieldType(C,fi)=ti if T is present,

or the range type resulting from evaluating r otherwise
X

 nullSet(C) = {nil1,1, …} … {niln,1, … } if T is present,

or the empty set {} otherwise

X

for all p =(p1,…,pd) domain(C):

 value(C,p) = range value resulting from evaluating r with possi-

ble occurrences of ai substituted by the corresponding pi coordi-

nate value.

X

 metadata(C) = m if M is present,

or the empty string ―‖ otherwise
X

If some range type components have null values but only one has not then the cross prod-

uct is empty and the coverage cannot have any null value altogether. To avoid erroneous

constructs, therefore, if at least one field has nulls then all fields must have nulls.

Requirement 71
In the range type definition of a xWcpsCoverageConstructorExpr, if there is at least one

field with at least one null value defined then every field shall have at least one null value
defined.

Addressing a neighbourhood of a pixel in a query is restricted to inspection on Index CRS

level, so as to avoid addressing into positions which are not direct positions.

Requirement 72
In the range set definition of a xWcpsCoverageConstructorExpr, axis iterator variables

may only be used if they are of type index.

NOTE One way of doing so is to use the Grid Index axes instead of the domain coordinates, such as i,
j, k instead of Lat, Long, time. However, if the domain CRS has index axes these can be used as well (see
below for an example). The definition of the 4D Index CRS can be obtained from here:
http://www.opengis.net/def/crs/OGC/0/Index4D

8.2.3.7 Examples

The following domain set establishes a 2D WGS84 grid with several allowed interpola-

tion methods.

domain set

 crs “EPSG:4326” with

 Lat regular (10:30) resolution 0.01,

 Long regular (10:30) resolution 0.01,

 interpolation nearest, linear, quadratic, cubic

http://www.opengis.net/def/crs/OGC/0/Index4D

WCPS

66

EPSG:4326 establishes Lat and Long axes, therefore in the following domain set expres-

sion the first axis will be associated with Lat and the second with Long, regardless of the

axis naming in the domain set expression:

domain set

 crs “EPSG:4326” with

 a regular (10:30) resolution 0.5,

 b regular (10:30) resolution 0.5

The next domain set establishes a 4D georeferenced timeseries datacube with a spectral

dimension, regular in Lat/Long and irregular in time (given the varying number of days a

month has and based on the daily resolution specified).

domain set

 crs “EPSG:4326+OGC:unixTtime” with

 Lat regular (10:30) resolution 0.5,

 Long regular (10:30) resolution 0.5,

 date irregular (“2017-01-01”, “2017-02-01”,

 “2017-03-01”, “2017-04-01”,

 “2017-05-01”, “2017-06-01”,

 “2017-07-01”, “2017-08-01”,

 “2017-09-01”, “2017-10-01”,

 “2017-11-01”, ”2017-12-01”

),

 band index (1:32)

The expression below represents a single-band range type of data type unsigned short

with null values 254 and 255; allowed interpolations are linear and quadratic.

range type

 panchromatic : unsigned char nil 254, 255

The following range type defines RGB pixels.

range type

 red : unsigned char,

 green : unsigned char,

 blue : unsigned char

The coverage constructor below resembles an induced operation, reducing intensity in all

range fields by ½. Domain set and range type are adopted from the input coverage.

coverage GeneralGridCoverage Half

range set (unsigned char) $C / 2

Below follows a complete coverage constructor representing a 3-D georeferenced image

timeseries whose range set gets loaded from some input file provided, represented by the

positional parameter $1. Further, some sketchy INSPIRE XML metadata record is asso-

ciated:

WCPS

 67

coverage GeneralGridCoverage MySatelliteDatacube

domain set

 crs “EPSG:4326+OGC:unixTime” with

 Lat regular (10:30) resolution 0.5,

 Long regular (10:30) resolution 0.5,

 date regular (“2017-01”:”2019-12”) resolution “P1M”

range type panchromatic : short,

range set decode($1)

metadata “<inspireMetadata>...</inspireMetadata>”

The expression below computes a 256-bucket histogram over band blue of some cover-

age $C of unknown domain extent and dimension:

coverage GeneralGridCoverage histogram

domain set

 crs OGC:Index1D with

 bucket index (0:255)

range type

 b : unsigned long

range set

 count($C.blue = bucket)

If constituents can be determined then they do not need to be indicated; in this case input

coverage $C is copied; assuming it has range type unsigned short then the log() operation

suggests a float result, so this will be adopted as range type. Along the same line, the do-

main set is adopted from $C:

coverage GeneralGridCoverage LogOfCube

range set log($C)

The earlier mentioned filter kernel operation is expressed in xWCPS like this:

coverage GeneralGridCoverage FilteredImage

domain set

 crs “OGC:Index2d” with

 x index (0 : 5000),

 y index (0 : 5000)

range set

 condense +

 over $pi i index (-1 : +1),

 $pj j index (-1 : +1)

 using $C.blue[x(x+i), y(y+j)]

8.2.4 decodeCoverageExpr

A decodeCoverageExpr evaluates a byte stream passed as parameter to a coverage by

decoding the byte stream. This byte stream must represent a coverage encoding following

CIS 1.1 [09-146r6] and its coverage encoding profiles.

NOTE Implementations will be able to recognize the encoding format used from analyzing the input
byte stream, hence no format indication parameter is required.

WCPS

68

Requirement 73
Syntax and semantics of a decodeCoverageExpr shall be given as follows.

Let

b be a byteString

where

b is a valid (binary or ASCII) representation of a complete coverage or a domain

set, range type, range set, or metadata component of a coverage,

extraParams is a stringConstant containing decoding directives, such as de-

fined in the CIS encoding profile for the format on hand,

Then,

for any decodeCoverageExpr C

where C is one of

 Ce = decode (b)

 Cee = decode (b , extraParams)

C is defined as the decoded coverage or coverage component equivalent to b while

applying the directives in extraParams.

In practice, this function can be used in several ways:

 To provide inline constants, such as XML documents or fragments

 To provide input files, accompaniying the query, through positional parameters

Example Assume a NetCDF file is passed as positional parameter $1 in the WCS Processing Extension
[OGC 08-059]). This decodes the byte stream and establishes the corresponding coverage:

decode($1)

Note The extraParams syntax and semantics is data format dependent, specified in the CIS en-
coding formats.

8.2.5 switchExpr

The switchExpr provides a case distinction for choosing among a set of coverages that

all share domain and range type. Conditions provided are evaluated sequentially, and the

first true alternative is chosen if any; otherwise, the default alternative is chosen.

 If the result expressions return scalar values, the returned scalar value on a branch

is used in places where the condition expression on that branch evaluates to true.

 If the result expressions return coverages, the values of the returned coverage on a

branch are copied in the result coverage in all places where the condition coverage

on that branch contains pixels with value true.

WCPS

 69

The conditions of the statement are evaluated in a manner similar to the if-then-else state-

ment in programming languages such as Java or C++.

NOTE This implies that the conditions must be specified by order of generality, starting with the least
general and ending with the default result, which is the most general one. A less general condition specified
after a more general condition will be ignored, as the expression meeting the less general expression will
have had already met the more general condition.

Requirement 74
Syntax and semantics of a switchExpr shall be given as follows.

Let

n be an integer with n 1,

b1, …, bn be booleanExprs with a single Boolean range component,

C1, …, Cn be coverageExprs with a single Boolean range component,

R,R1, …, Rn+1 be coverageExprs,

where, for 1 i n,

crs(C1) = … = crs(Cn) = crs(R1) = … = crs(Rn+1),

domain(C1) = … = domain(Cn) = domain(R1) = … = domain(Rn+1),

indexCrs(C1) = … = indexCrs(Cn) = indexCrs(R1) = … = indexCrs(Rn+1),

indexDomain(C1) = … = indexDomain(Cn) = indexDomain(R1) = … = indexDo-

main(Rn+1),

rangeType(R1) = … = rangeType(Rn+1).

Then,

for any coverageExpr C’

where
 C’ = switch

 case C1 return R1

 …

 case Cn return Rn

 default return Rn+1

coverage C’ is defined as follows:

Coverage constituent Changed?

 identifier(C’) = ―‖ (empty string) X

 crs(C’) = crs(R1)

 domain(C’) = domain(R1)

 indexCrs(C’) = indexCrs(R1)

 indexDomain(C’) = indexDomain(R1)

WCPS

70

 interpolationSet(C’) = interpolationSet(R1) … interpola-

tionSet(Rn+1)

X

 rangeFieldNames(C’) = rangeFieldNames(R1)

 rangeType(C’) = rangeType(R1)

 nullSet(C’) = nullSet(R1) … nullSet(Rn+1) X

for all p domain(C’):

 value(C’, p) =

 if values(C’,p) = true then values(R1,p)

 else if values(C’,p) {false,null} then values(R2,p)

 …

 else values(Rn+1,p)

X

 metadata(C2) = {} X

Example 1 The expression below performs a traffic light classification on some single-band coverage $c.

switch

 case $c < 10 return $c * {red: 0; green: 0; blue: 255}

 case $c < 20 return $c * {red: 0; green: 255; blue: 0}

 case $c < 30 return $c * {red: 255; green: 0; blue: 0}

 default return {red: 0; green: 0; blue: 0}

Example 2 The example below computes log of all positive values in $c, and assigns 0 to the remaining

ones. This way it avoids an exception that would otherwise be thrown should any cell not be above zero.

switch

 case $c>0 return log($c)

 default return 0

8.3 Evaluation response

The response to a valid xWCPS query shall be a (possibly empty) sequence of strings or a

(possibly empty) sequence of coverages.

Requirement 75
A coverage-valued response to a valid WCPS request shall validate against OGC CIS.

8.4 Metadata

An implementation may choose to not return the complete metadata component of a cov-

erage.

NOTE A possible reason is to differentiate between global metadata (which are valid for the whole
coverage and get delivered always) and local metadata (which are valid for a part of a coverage and get only

WCPS

 71

delivered in a subsetting when the area of their validity is retrieved). In this version of the standard this be-
havior is implementation dependent; in a future version, conventions may be established.

8.4.1 Operator precedence rules

Operator precedence of WCPS remains unchanged, but new operators are phased in.

Requirement 76
xWCPS Operator precedence shall be as follows:

 Range field selection, trimming, slicing

 unary –

 unary arithmetic, trigonometric, and exponential functions

 *, /

 +, -

 <, <=, >, >=, !=, =

 and

 or, xor

 : (interval constructor), condense, coverage, xWCPS coverage constructor

 Overlay, switch

In all remaining cases evaluation is done left to right.

8.5 Character encoding

The character set available in an xWCPS query is depending on the embedding protocol.

Requirement 77
The character set of an xWCPS request shall follow the rules of the embedding protocol
binding context; default is US ASCII.

Example An extra parameter in a WCS Processing request may specify a Unicode character set.

A quoted string may contain any character, even national special characters and non-

printable characters, as long as these are properly encoded following http URL rules.

Requirement 78
Non-printable characters in an xWCPS request shall be represented according to http rules.

WCPS

72

8.6 Evaluation exceptions

Not all syntactically valid xWCPS expressions are semantically admissible. Possible er-

rors include:

 An XPath expression result is used as input for a function which expects a differ-

ent structure;

 The data volume construed by the XPath expression is exceeding the server‘s ca-

pabilities;

 An XPath expression attempts to reach into the metadata, but these are not valid

XML.

Requirement 79
Whenever a coverage expression cannot be evaluated an xWCPS service shall respond with
an exception.

NOTE No specific exception handling is defined here as this will be defined by the concrete protocol
binding the WCPS service provides, such as GET/KVP, XML/POST, SOAP, or OpenAPI.

WCPS

 73

Annex A
(normative)

Abstract Test Suite

The Abstract Test Suite for WCPS is provided in [OGC 08-069], defining conformance

class WCPS which is the core conformance class. The additional rules for xWCPS, which

needs to be passed in addition to WCPS, are provided below.

Requirement 1 – Syntax and semantics of a xWcpsExpr shall be given by a WCPS pro-

cessCoverageExpr potentially in addition containing letExprs, xpathExprs, xWcpsCove-

rageConstructorExprs, decodeCoverageExprs, switchExprs.

Test:

 Send query to system under test containing valid versions of each of the expres-

sions

 Check for proper result.

Requirement 2 – Syntax and semantics of a letExpr shall be given as follows.

Test:

 Send query to system under test containing valid versions of let expressions

 Check for proper result.

Requirement 3 – An xWCPS query consists of WCPS express may contain occurrences of
variables defined in the scope of the XPath expression.

Test:

 Send query to system under test containing let expressions with valid variables

used in other places of the query

 Check for proper result.

Requirement 4 – An XPath expression in an xWCPS query may contain occurrences of
variables defined in the scope of the XPath expression.

Test:

 Send query to system under test containing valid XPath expressions utilizing let

variables

 Check for proper result.

WCPS

74

Requirement 5 – In a context requiring coverages or constituents thereof the result of

evaluating an XPath expression in an xWCPS query shall be interpreted as given by the CIS
XML schema pertaining to the particular coverage type on hand.

Test:

 Send query to system under test containing valid XPath expressions

 Check for result matching CIS XML schema.

Requirement 6 – A domainSetExpr shall describe a valid coverage domain set following

the rules defined in OGC CIS whereby domainSetExpr establishes the following domain set
constituents: (…)

Test:

 Send query to system under test containing valid domainSetExprs (as part of cov-

erage constructor)

 Check for proper domain set result.

Requirement 7 – Syntax and semantics of a rangeTypeExpr shall be given as follows.

Test:

 Send query to system under test containing valid rangeTypeExprs (as part of cov-

erage constructor)

 Check for proper domain set result.

Requirement 8 – Syntax and semantics of a rangeSetExpr shall be given as follows.

Test:

 Send query to system under test containing valid rangeSetExprs (as part of cover-

age constructor)

 Check for proper result.

Requirement 9 – Syntax of a metadataExpr shall be given as follows.

Test:

 Send query to system under test containing valid metadataExprs (as part of cover-

age constructor)

 Check for proper result.

WCPS

 75

Requirement 10 – Syntax and semantics of an xWcpsCoverageConstructorExpr shall be

given as follows.

Test:

 Send query to system under test containing valid xWcpsCoverageConstructo-

rExprs

 Check for proper result.

Requirement 11 – In a xWcpsoverageConstructorExpr a RectifiedGridCoverage shall

contain only axes of type index and regular; a ReferenceableGridCoverage shall contain only
axes of type irregular.

Test:

 Send query to system under test containing valid xWcpsCoverageConstructo-

rExprs

 Check for proper result.

Requirement 12 – Syntax and semantics of a decodeCoverageExpr shall be given as fol-
lows.

Test:

 Send query to system under test containing valid decodeCoverageExprs

 Check for proper domain set result.

Requirement 13 – Syntax and semantics of a switchExpr shall be given as follows.

Test:

 Send query to system under test containing valid switchExprs

 Check for proper domain set result.

Requirement 14 – A coverage-valued response to a valid WCPS request shall validate
against OGC CIS.

Test:

 Send query to system under test returning OGC CIS coverages

 Check for proper domain set result.

Requirement 15 xWCPS Operator precedence shall be as follows: (…)

WCPS

76

Test:

 Send query to system under test containing unparenthesized expressions, send

same queries adequately parenthesized to determine same result

 Check for proper domain set result.

Requirement 16 – The character set of an xWCPS request shall follow the rules of the em-
bedding protocol binding context; default is US ASCII.

Test:

 Send query to system under test containing valid characters for protocol bindings

supported by the system under test; test at least US ASCII.

 Check for proper domain set result.

Requirement 17 – Non-printable characters in an xWCPS request shall be represented ac-
cording to http rules.

Test:

 Send query to system under test containing non-printable characters in input and

output

 Check for proper domain set result.

Requirement 18 – Whenever a coverage expression cannot be evaluated an xWCPS service

shall respond with an exception.

Test:

 Send query to system under test which must fail, expecting proper exceptions

 Check for proper domain set result.

WCPS

 77

Annex B
(normative)

WCPS Expression Syntax

B.1 Overview

This Annex summarizes the WCPS expression syntax. It is described in EBNF grammar

syntax according to [IETF RFC 2616].

Underlined tokens represent literals which appear ―as is‖ in a valid WCPS expression

(―terminal symbols‖), tokens in italics represent either sub-expressions to be substituted

according to the grammar production rules (―non-terminals‖) or terminal symbol classes

like identifiers, strings, and numbers as listed at the end of this Annex. The process-

CoveragesExpr nonterminal is the start of the production system.

Any number of whitespace characters (blank, tabulator, newline) may appear between

tokens as long as parsing is unambiguous.

Example Between language tokens (such as ―for‖) and names there must be at least one whitespace cha-
racter, whereas between names and non-alphanumeric tokens (such as opening parenthesis, ―(―), no whites-
pace is required.

Meta symbols used are as follows:

- brackets (―[…]‖) denote optional elements which may occur or be left out;

- an asterisk (―*‖) denotes that an arbitrary number of repetitions of the following

element can be chosen, including none at all;

- a vertical bar (―|‖) denotes alternatives from which exactly one must be chosen;

- Double slashes (―//‖) begin comments which continue until the end of the line.

Comments are normative.

NOTE The syntax as is remains ambiguous; the semantic rules listed in this document disambiguate the
grammar.

B.2 WCPS terminal symbols

The following are terminal symbols, in addition to the underlined terminal literals:
variableName; name; stringConstant; booleanConstant; integer-

Constant; floatConstant.

A variableName shall be a consecutive sequence of characters where the first character

shall be either an alphabetical character or the ―$‖ character and the remaining characters

consist of decimal digits, upper case alphabetical characters, lower case alphabetical cha-

racters, underscore (―_‖), and nothing else. The length of an identifier shall be at least 1.

WCPS

78

NOTE The regular expression describing a variable is: $[a-zA-Z_][0-9a-zA-Z_]*.

A name shall either be a consecutive sequence of digits and/or letters where the first cha-

racter is a letter, or a non-empty string constant.

NOTE 1 The regular expression describing a name identifier is: ([a-zA-Z_][0-9a-zA-Z_]*)|(―.+‖).

NOTE 2 WCS [OGC 07-067r5] allows significant freedom in the choice of names; to combine syntactic-
al simplicity with this generality in a syntax-controlled environment both a non-quoted and a quoted variant
are provided.

A booleanConstant shall represent a logical truth value expressed as one of the liter-

als ―true‖ and ―false‖ resp., whereby upper and lower case characters shall not be distin-

guished.

An integerConstant shall represent an integer number expressed in either decimal,

octal (with a ―0‖ prefix), or hexadecimal notation (with a ―0x‖ or ―0X‖ prefix).

A floatConstant shall represent a floating point number following the syntax of the

Java programming language.

A stringConstant shall represent a character sequence expressed by enclosing it into

single or double quotes, with no mix of both in a single constant.

B.3 WCPS syntax

processCoveragesExpr:

 for variableName in (coverageList)

 *(, variableName in (coverageList))

 [where booleanScalarExpr]

 return processingExpr

 | xWcpsExpr

coverageList:

 coverageName *(, coverageName)

processingExpr:

 encodedCoverageExpr

 | scalarExpr

encodedCoverageExpr:

 encode (coverageExpr , formatName

 [, extraParams])

formatName:

 stringConstant

extraParams:

 stringConstant

scalarExpr:

 getComponentExpr

WCPS

 79

 | booleanScalarExpr

 | numericScalarExpr

 | (scalarExpr)

booleanScalarExpr:

 booleanScalarExpr or booleanScalarTerm

 | booleanScalarExpr xor booleanScalarTerm

 | booleanScalarTerm

booleanScalarTerm:

 booleanScalarTerm and booleanScalarFactor

 | booleanScalarFactor

booleanScalarFactor:

 numericScalarExpr compOp numericScalarExpr

 | stringScalarExpr compOp stringScalarExpr

 | not booleanScalarExpr

 | (booleanScalarExpr)

 | booleanConstant

numericScalarExpr:

 numericScalarExpr + numericScalarTerm

 | numericScalarExpr - numericScalarTerm

 | numericScalarTerm

numericScalarTerm:

 numericScalarTerm * numericScalarFactor

 | numericScalarTerm / numericScalarFactor

 | numericScalarFactor

numericScalarFactor:

 (numericScalarExpr)

 | - numericScalarFactor

 | round (numericScalarExpr)

 | integerConstant

 | floatConstant

 | complexConstant

 | condenseExpr

compOp:

 =

 | !=

 | >

 | >=

 | <

 | <=

stringScalarExpr:
 identifierExpr
 | stringConstant

getComponentExpr:

 identifierExpr

WCPS

80

 | crs (coverageExpr)

 | domainExpr

 | imageCrs (coverageExpr)

 | indexCrs (coverageExpr)

 | indexDomain (coverageExpr)

 | imageCrsDomain (coverageExpr)

 | indexDomain (coverageExpr , axisName)

 | imageCrsDomain (coverageExpr , axisName)

 | indexDomain (coverageExpr , axisName) . lo

 | imageCrsDomain (coverageExpr , axisName) . lo

 | indexDomain (coverageExpr , axisName) . hi

 | imageCrsDomain (coverageExpr , axisName) . hi

 | nullSet (coverageExpr)

 | interpolationSet (coverageExpr)

identifierExpr:

 identifier (coverageExpr)

 | id (coverageExpr)

 | name (coverageExpr)

domainExpr:

 domain (coverageExpr)

setComponentExpr:

 setIdentifier (coverageExpr , stringConstant)

 | setId (coverageExpr , stringConstant)

 | setName (coverageExpr , stringConstant)

 | setNull (coverageExpr ,

 { [rangeExpr *(, rangeExpr)] })

 | setInterpolation (coverageExpr ,

 { interpolationMethod

 *(, interpolationMethod) })

 | setMetadata (coverageExpr , stringConstant)

rangeExpr:

 struct { fieldName : scalarExpr

 *(, fieldName : scalarExpr) }

 | { scalarExpr *(, scalarExpr) }

coverageExpr:

 coverageLogicExpr or coverageLogicTerm

 | coverageLogicExpr xor coverageLogicTerm

 | coverageLogicTerm

coverageLogicTerm:

 coverageLogicTerm and coverageLogicFactor

 | coverageLogicFactor

coverageLogicFactor:

 coverageArithmExpr compOp coverageArithmExpr

 | coverageArithmExpr

WCPS

 81

coverageArithmExpr:

 coverageArithmExpr + coverageArithmTerm

 | coverageArithmExpr - coverageArithmTerm

 | coverageArithmTerm

coverageArithmTerm:

 coverageArithmTerm * coverageArithmFactor

 | coverageArithmTerm / coverageArithmFactor

 | coverageArithmFactor

coverageArithmFactor:

 coverageArithmFactor overlay coverageValue

 | coverageValue

coverageValue:

 coverageAtom

 | subsetExpr

 | unaryInducedExpr

 | crsTransformExpr

 | scaleExpr

coverageAtom:

 variableName

 | setComponentExpr

 | scalarExpr

 | coverageConstantExpr

 | coverageConstructorExpr

 | (coverageExpr)

unaryInducedExpr:

 unaryArithmeticExpr

 | exponentialExpr

 | trigonometricExpr

 | booleanExpr

 | castExpr

 | fieldExpr

 | rangeConstructorExpr

unaryArithmeticExpr:

 + coverageAtom

 | - coverageAtom

 | sqrt (coverageExpr)

 | abs (coverageExpr)

 | re (coverageExpr)

 | im (coverageExpr)

exponentialExpr:

 exp (coverageExpr)

 | log (coverageExpr)

 | ln (coverageExpr)

trigonometricExpr:

 sin (coverageExpr)

WCPS

82

 | cos (coverageExpr)

 | tan (coverageExpr)

 | sinh (coverageExpr)

 | cosh (coverageExpr)

 | tanh (coverageExpr)

 | arcsin (coverageExpr)

 | arccos (coverageExpr)

 | arctan (coverageExpr)

booleanExpr:

 not coverageExpr

 | bit (coverageExpr , indexExpr)

indexExpr:

 indexExpr + indexTerm

 | indexExpr – indexTerm

 | indexTerm

indexTerm:

 indexTerm * indexFactor

 | indexTerm / indexFactor

 // integer division, rounding to next integer towards 0
 | indexFactor

indexFactor:

 indexConstant

 | round (numericScalarExpr)

 | (indexExpr)

castExpr:

 (rangeType) coverageExpr

rangeType:

 boolean

 | char

 | unsigned char

 | short

 | unsigned short

 | long

 | unsigned long

 | float

 | double

 | complex

 | complex2

 | complex char

 | complex short

 | complex int

 | complex long

fieldExpr:

 coverageExpr . fieldName

WCPS

 83

rangeConstructorExpr:

 struct { fieldName : coverageExpr

 *(; fieldName : coverageExpr) }

subsetExpr:

 trimExpr

 | sliceExpr

 | extendExpr

trimExpr:

 coverageExpr [dimensionIntervalList]

dimensionIntervalList:

 dimensionIntervalElement

 *(, dimensionIntervalElement)

dimensionIntervalElement:

 axisName (axisPointExpr : axisPointExpr)

 | axisName (domainExpr)

dimensionCrsList:

 { dimensionCrsElement *(, dimensionCrsElement) }

dimensionCrsElement:

 axisName : crsName

sliceExpr:

 coverageExpr [axisPointList]

axisPointList:

 axisPointElement *(, axisPointElement)

axisPointElement:

 axisName (axisPointExpr)

axisPointExpr:

 stringConstant

 | booleanConstant

 | integerConstant

 | floatConstant

extendExpr:

 extend (coverageExpr , dimensionIntervalList)

scaleExpr:

 scale (coverageExpr , dimensionIntervalList ,

 [, InterpolationMethod])

 | scale (coverageExpr , scalarExprList

 [, InterpolationMethod])

 | scale (coverageExpr , scalarExpr

 [, InterpolationMethod])

WCPS

84

scalarExprList:

 { scalarExpr [, scalarExpr] }

crsTransformExpr:

 crsTransform (coverageExpr ,

 dimensionCrsList ,

 fieldInterpolationList)

interpolationMethod:
 nearest

 | linear

 | quadratic

 | cubic

coverageConstructorExpr:

 coverage coverageName

 over axisIterator *(, axisIterator)

 values scalarExpr

axisIterator:

 variableName axisName (intervalExpr)

intervalExpr:

 indexExpr : indexExpr // left value ≤ right value
 | imageCrsDomain (variableName , axisName)

 | indexDomain (variableName , axisName)

coverageConstantExpr:

 coverage coverageName

 over axisSpec *(, axisSpec)

 values < constant *(; constant) >

axisSpec:

 axisName (intervalExpr)

condenseExpr:

 reduceExpr

 | generalCondenseExpr

reduceExpr:

 all (coverageExpr)

 | some (coverageExpr)

 | count (coverageExpr)

 | add (coverageExpr)

 | avg (coverageExpr)

 | min (coverageExpr)

 | max (coverageExpr)

generalCondenseExpr:

 condense condenseOpType

 over axisIterator *(, axisIterator)

WCPS

 85

 [where booleanScalarExpr]

 using scalarExpr

condenseOpType:

 +

 | *

 | max

 | min

 | and

 | or

coverageName:

 nameOrString

crsName:

 stringConstant // containing a valid CRS identifier

axisName:

 name

fieldName:

 name

constant:

 stringConstant

 | booleanConstant

 | integerConstant

 | floatConstant

 | complexConstant

complexConstant:

 (floatConstant , floatConstant)

 (integerConstant , integerConstant)

B.3 xWCPS syntax

For xWCPS definition this new start symbol is used. It relies on the WCPS syntax, i.e., its

nonterminals and terminals declared in Subclauses B.1 and B.2.

xWcpsExpr:

 for variableName in (coverageList)

 *(, variableName in (coverageList))

 [letExpr]

 [where booleanScalarExpr]

 return processingExpr

letExpr:

 let letBinding *(, letBinding)

WCPS

86

letBinding:

 variableName := (coverageExpr | scalarExpr

 | [intervalExpr])

xWcpsCoverageConstructorExpr:

 coverage coverageTypeName nameOrIdentifier

 [domainSetExpr] [rangeTypeExpr] rangeSetExpr

 [metadataExpr]

coverageTypeName:

 RectifiedGridCoverage

 | ReferenceableGridCoverage

 | GeneralGridCoverage

 | nameOrString // name of a coverage type derived from the above

domainSetExpr:

 domain set

 crs nameOrString with

 nameOrString axisdefExpr

 *(, nameOrString axisdefExpr)

 [interpolationExpr]

interpolationExpr:

 interpolation

 interpolationMethod *(, interpolationMethod)

axisdefExpr:

 index (indexExpr : indexExpr)

 | regular (axisPointExpr : axisPointExpr)

 resolution axisPointExpr

 | irregular (axisPointExpr *(, axisPointExpr))

rangeTypeExpr:

 range type rangeComponent (, rangeComponent)*

rangeComponent:

 nameOrString : name [nilExpr]

nilExpr:

 nil rangeExpr *(, rangeExpr)

rangeSetExpr:

 range set scalarExpr

metadataExpr:

 metadata stringConstant

nameOrString:

 name | stringConstant

scalarExpr:

 … // B.2 definitions

 | xpathExpr // as per W3C XPath 3.1

WCPS

 87

Coordinates can be more general, and even non-numeric (cf. date and time):

intervalExpr:

 … // WCPS definitions
 | nameOrString

WCPS

88

Bibliography

[1] Ritter, G., Wilson, J., Davidson, J.: Image Algebra: An Overview. Computer Vi-

sion, Graphics, and Image Processing, 49(3)1990, pp. 297-331

[2] Baumann, P.: A Database Array Algebra for Spatio-Temporal Data and Beyond.

The Fourth International Workshop on Next Generation Information Technologies

and Systems (NGITS '99), July 5-7, 1999, Zikhron Yaakov, Israel, Lecture Notes on

Computer Science 1649, Springer Verlag, pp. 76 – 93

[3] Baumann, P.: The OGC Web Coverage Processing Service (WCPS) Standard.

Geoinformatica, 14(4)2010, pp 447-479

[4] P. Baumann, D. Misev, V. Merticariu, B. Pham Huu: Datacubes: Towards

Space/Time Analysis-Ready Data.. In: J. Doellner, M. Jobst, P. Schmitz (eds.): Ser-

vice Oriented Mapping - Changing Paradigm in Map Production and Geoinforma-

tion Management, Springer Lecture Notes in Geoinformation and Cartography,

2018

[5] P. Baumann, A.P. Rossi et al: Fostering Cross-Disciplinary Earth Science Through

Datacube Analytics. In. P.P. Mathieu, C. Aubrecht (eds.): Earth Observation Open

Science and Innovation - Changing the World One Pixel at a Time, International

Space Science Institute (ISSI), 2017, pp. 91 - 119

